Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/6027
DC 欄位值語言
dc.contributor.authorChin-Chun Changen_US
dc.contributor.authorHsin-Ta Huangen_US
dc.date.accessioned2020-11-19T11:56:33Z-
dc.date.available2020-11-19T11:56:33Z-
dc.date.issued2019-12-
dc.identifier.issn2168-2267-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/6027-
dc.description.abstractBatch-mode active learning algorithms can select a batch of valuable unlabeled samples to manually annotate for reducing the total cost of labeling every unlabeled sample. To facilitate selection of valuable unlabeled samples, many batchmode active learning algorithms map samples to the reproducing kernel Hilbert space induced by a radial-basis function (RBF) kernel. Setting a proper value to the parameter for the RBF kernel is crucial for such batch-mode active learning algorithms. In this paper, for automatic tuning of the kernel parameter, a hypothesis-margin-based criterion function is proposed. Three frameworks are also developed to incorporate the function of automatic tuning of the kernel parameter with existing batchmodel active learning algorithms. In the proposed frameworks, the kernel parameter can be tuned in a single stage or in multiple stages. Tuning the kernel parameter in a single stage aims for the kernel parameter to be suitable for selecting the specified number of unlabeled samples. When the kernel parameter is tuned in multiple stages, the incorporated active learning algorithm can be enforced to make coarse-to-fine evaluations of the importance of unlabeled samples. The proposed framework can also improve the scalability of existing batch-mode active learning algorithms satisfying a decomposition property. Experimental results on data sets comprising hundreds to hundreds of thousands of samples have shown the feasibility of the proposed framework.en_US
dc.language.isoenen_US
dc.relation.ispartofIeee Transactions on Cyberneticsen_US
dc.subjectKernelen_US
dc.subjectTuningen_US
dc.subjectTrainingen_US
dc.subjectLabelingen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectClustering algorithmsen_US
dc.subjectCyberneticsen_US
dc.titleAutomatic Tuning of the RBF Kernel Parameter for Batch-Mode Active Learning Algorithms: A Scalable Frameworken_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/tcyb.2018.2869861-
dc.identifier.isiWOS:000485687200035-
dc.relation.journalvolume49en_US
dc.relation.journalissue12en_US
dc.relation.pages4460 - 4472en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

14
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

162
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋