Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/6038
DC FieldValueLanguage
dc.contributor.authorChi-Han Chuangen_US
dc.contributor.authorShyi-Chyi Chengen_US
dc.contributor.authorChin-Chun Changen_US
dc.contributor.authorYi-Ping Phoebe Chenen_US
dc.date.accessioned2020-11-19T11:56:35Z-
dc.date.available2020-11-19T11:56:35Z-
dc.date.issued2014-07-
dc.identifier.issn1047-3203-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/6038-
dc.description.abstractFor a variety of applications such as video surveillance and event annotation, the spatial–temporal boundaries between video objects are required for annotating visual content with high-level semantics. In this paper, we define spatial–temporal sampling as a unified process of extracting video objects and computing their spatial–temporal boundaries using a learnt video object model. We first provide a computational approach for learning an optimal key-object codebook sequence from a set of training video clips to characterize the semantics of the detected video objects. Then, dynamic programming with the learnt codebook sequence is used to locate the video objects with spatial–temporal boundaries in a test video clip. To verify the performance of the proposed method, a human action detection and recognition system is constructed. Experimental results show that the proposed method gives good performance on several publicly available datasets in terms of detection accuracy and recognition rate.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Visual Communication and Image Representationen_US
dc.subjectSemantic video objectsen_US
dc.subjectSpatial–temporal samplingen_US
dc.subjectHuman action detectionen_US
dc.subjectVideo object modelen_US
dc.subjectDynamic programmingen_US
dc.subjectMultiple alignmenten_US
dc.subjectModel-based trackingen_US
dc.subjectVideo object detetcionen_US
dc.titleModel-based approach to spatial-temporal sampling of video clips for video object detection by classificationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jvcir.2014.02.014-
dc.identifier.isiWOS:000336891200029-
dc.relation.journalvolume25en_US
dc.relation.journalissue5en_US
dc.relation.pages1018-1030en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

10
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

217
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback