Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/7178
DC 欄位值語言
dc.contributor.authorShyi-Chyi Chengen_US
dc.contributor.authorHsiao, K. F.en_US
dc.contributor.authorYang, C. K.en_US
dc.contributor.authorHsiao, P. F.en_US
dc.contributor.authorYu, W. H.en_US
dc.date.accessioned2020-11-20T06:40:16Z-
dc.date.available2020-11-20T06:40:16Z-
dc.date.issued2020-06-
dc.identifier.issn1380-7501-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/7178-
dc.description.abstractIn this paper we present a novel moment-based skeleton detection for representing human objects in RGB-D videos with animated 3D skeletons. An object often consists of several parts, where each of them can be concisely represented with a skeleton. However, it remains as a challenge to detect the skeletons of individual objects in an image since it requires an effective part detector and a part merging algorithm to group parts into objects. In this paper, we present a novel fully unsupervised learning framework to detect the skeletons of human objects in a RGB-D video. The skeleton modeling algorithm uses a pipeline architecture which consists of a series of cascaded operations, i.e., symmetry patch detection, linear time search of symmetry patch pairs, part and symmetry detection, symmetry graph partitioning, and object segmentation. The properties of geometric moment-based functions for embedding symmetry features into centers of symmetry patches are also investigated in detail. As compared with the state-of-the-art deep learning approaches for skeleton detection, the proposed approach does not require tedious human labeling work on training images to locate the skeleton pixels and their associated scale information. Although our algorithm can detect parts and objects simultaneously, a pre-learned convolution neural network (CNN) can be used to locate the human object from each frame of the input video RGB-D video in order to achieve the goal of constructing real-time applications. This much reduces the complexity to detect the skeleton structure of individual human objects with our proposed method. Using the segmented human object skeleton model, a video surveillance application is constructed to verify the effectiveness of the approach. Experimental results show that the proposed method gives good performance in terms of detection and recognition using publicly available datasets.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.subjectObject skeleton modeling and detectionen_US
dc.subjectMoment-based symmetry feature detectionen_US
dc.subjectRGB-D imagesen_US
dc.subjectPart mergingen_US
dc.subjectUnsupervised feature learningen_US
dc.titleA novel unsupervised 3D skeleton detection in RGB-D images for video surveillanceen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000544744600004-
dc.identifier.doi<Go to ISI>://WOS:000544744600004-
dc.identifier.doi10.1007/s11042-018-6292-y-
dc.identifier.doi<Go to ISI>://WOS:000544744600004-
dc.identifier.doi<Go to ISI>://WOS:000544744600004-
dc.identifier.doi<Go to ISI>://WOS:000544744600004-
dc.identifier.doi<Go to ISI>://WOS:000544744600004-
dc.identifier.url<Go to ISI>://WOS:000544744600004-
dc.relation.journalvolume79en_US
dc.relation.journalissue23-24en_US
dc.relation.pages15829–15857en_US
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

140
上周
1
上個月
1
checked on 2022/10/13

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋