Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 11 SUSTAINABLE CITIES & COMMUNITIES
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/9013
DC 欄位值語言
dc.contributor.authorYung-Chia Chiuen_US
dc.contributor.authorChih-Wei Chiangen_US
dc.contributor.authorTsung-Yu Leeen_US
dc.date.accessioned2020-11-20T12:04:21Z-
dc.date.available2020-11-20T12:04:21Z-
dc.date.issued2016-06-10-
dc.identifier.issn1998-9563-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/9013-
dc.description.abstractThe adaptive neuro fuzzy inference system (ANFIS) has been proposed to model the time series of water quality data in this study. The biochemical oxygen demand data collected at the upstream catchment of Feitsui Reservoir in Taiwan for more than 20 years are selected as the target water quality variable. The classical statistical technique of the Box-Jenkins method is applied for the selection of appropriate input variables and data pre-processing of using differencing is implemented during the model development. The time series data obtained by ANFIS models are compared to those obtained by autoregressive integrated moving average (ARIMA) and artificial neural networks (ANNs). The results show that the ANFIS model identified at each sampling station is superior to the respective ARIMA and ANN models. The R values at all sampling stations of the training and testing datasets are 0.83-0.98 and 0.81-0.89, respectively, except at Huang-ju-pi-liao station. ANFIS models can provide accurate predictions for complex hydrological processes, and can be extended to other areas to improve the understanding of river pollution trends. The procedure of input selection and the pre-processing of input data proposed in this study can stimulate the usage of ANFIS in other related studies.en_US
dc.language.isoen_USen_US
dc.publisherIWA PUBLISHINGen_US
dc.relation.ispartofHYDROL RESen_US
dc.subjectARTIFICIAL NEURAL-NETWORKen_US
dc.subjectFUZZY INFERENCE SYSTEMen_US
dc.subjectWATER-QUALITYen_US
dc.subjectDISSOLVED-OXYGENen_US
dc.subjectRIVERen_US
dc.subjectPREDICTIONen_US
dc.subjectPERFORMANCEen_US
dc.subjectMANAGEMENTen_US
dc.subjectBODen_US
dc.subjectINTELLIGENCEen_US
dc.titleTime series modeling of biochemical oxygen demand at the upstream catchment of Feitsui Reservoir, Taiwanen_US
dc.typejournal articleen_US
dc.identifier.doi10.2166/nh.2016.136-
dc.identifier.url<Go to ISI>://WOS:000385992900012
dc.relation.journalvolume47en_US
dc.relation.journalissue5en_US
dc.relation.pages1069-1085en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptInstitute of Earth Sciences-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
顯示於:地球科學研究所
06 CLEAN WATER & SANITATION
11 SUSTAINABLE CITIES & COMMUNITIES
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
checked on 2022/3/13

Page view(s)

170
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋