Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/952
DC 欄位值語言
dc.contributor.authorSchendel, Alexanderen_US
dc.contributor.authorWelzel, Marioen_US
dc.contributor.authorSchlurmann, Torstenen_US
dc.contributor.authorHsu, Tai-Wenen_US
dc.date.accessioned2020-11-16T06:00:11Z-
dc.date.available2020-11-16T06:00:11Z-
dc.date.issued2020-10-
dc.identifier.issn0378-3839-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/952-
dc.description.abstractThe progressive expansion of offshore wind energy towards greater water depths demands for an optimization of foundation structure designs to a wider range of load conditions. In offshore waters, wind driven wave irregularity and directionality become important aspects of realistic sea states. To further improve the scour prediction in marine environment a novel experimental study was conducted to investigate the influence of directionally spread (3D) irregular waves on the scouring process. The tests were carried out in the 3D wave basin of the Ludwig-Franzius-Institute, Leibniz University Hannover, Germany. A monopile structure was simulated by a transparent pile made of acrylic glass. The study was set up to progress understanding and explore dissimilarities of scour development and patterns induced by directionally spread (3D) and unidirectional (2D) waves. The model tests were complemented by tests with superimposed oblique currents. Despite identical total wave energy in terms of m(0) between the directionally spread and unidirectional wave spectra, minor but distinct differences in scour depth and rate could be observed, which inevitably can only be attributed to the presence and role of the wave spread. For wave-only conditions final scour depths S/D induced by directionally spread waves were on average 33% smaller than those for unidirectional waves. Furthermore, final scour depths decreased with increasing wave spreading and displayed a growing dependency on KC numbers with increasing wave spreading. In combined wave and current conditions of up to U-cw < 0.62 scour depths were found to be slightly larger and scour progression over time faster for directionally spread than for unidirectional waves. Differences regarding the scouring rates and depths have been found to decline with flow conditions further approaching current dominated regime. A prediction approach to estimate the maximum scour depth induced by either directionally spread or unidirectional random waves is proposed. Reasonable results and insights of the present study help advancing the understanding of scour development under more realistic, i.e. natural sea-state, conditions for a more reliable design of marine and offshore infrastructure.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofCOAST ENGen_US
dc.subjectLOCAL SCOURen_US
dc.subjectVERTICAL PILESen_US
dc.subjectSCALEen_US
dc.titleScour around a monopile induced by directionally spread irregular waves in combination with oblique currentsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.coastaleng.2020.103751-
dc.identifier.isiWOS:000571162200002-
dc.identifier.url<Go to ISI>://WOS:000571162200002
dc.relation.journalvolume161en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.deptOcean Energy and Engineering Technology-
crisitem.author.orcid0000-0003-3784-7179-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
07 AFFORDABLE & CLEAN ENERGY
14 LIFE BELOW WATER
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

10
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

222
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋