Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/954
Title: Boussinesq modeling of spatial variability of infragravity waves on fringing reefs
Authors: Shih-Feng Su 
Ma, G. F.
Tai-Wen Hsu 
Keywords: Fringing reef;Infragravity waves;Boussinesq wave model
Issue Date: Jun-2015
Journal Volume: 101
Start page/Pages: 78-92
Source: Ocean Engineering
Abstract: 
Spatial variations of infragravity waves on fringing reefs are studied using a fully nonlinear Boussinesq equation model FUNWAVE-TVD. The effects of bottom roughness, forereef slope and tidal water level on significant wave height, wave setup and infragravity wave motion are investigated. Model results show that the cross-shore distributions of significant wave heights and setups are reasonably reproduced using the calibrated bottom friction coefficient. However, the infragravity wave heights over the reef flat are under-predicted. Spatial variations of infragravity waves at different tidal water levels exhibit distinct patterns. Spectral peaks and valleys on the reef flat, indicative of the generation of standing infragravity waves, are observed in the measurements and reproduced by the model. It is demonstrated that the model is capable of simulating the generation and propagation of infragravity motions on fringing reefs. The effects of relative submergence and inverse wave steepness on infragravity waves are investigated through a series of numerical experiments. The results demonstrate that the relative submergence has significant effects on the distributions of infragravity waves on the fringing reef. The maximum infragravity wave height decreases with increasing relative submergence at the reef edge. However, it increases with increasing relative submergence at the inner reef flat.
URI: http://scholars.ntou.edu.tw/handle/123456789/954
ISSN: 0029-8018
DOI: 10.1016/j.oceaneng.2015.04.022
Appears in Collections:河海工程學系

Show full item record

WEB OF SCIENCETM
Citations

32
Last Week
0
Last month
checked on Feb 23, 2023

Page view(s)

206
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback