Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1033
Title: Impaired G2/M cell cycle progression and marked elevation of Gadd45 protein level in zinc supplemented human bronchial epithelial cells
Authors: Rita S M Shih 
Stephen H K Wong
Norberta W Schoene
Jun Jun Zhang
Kai Y Lei
Issue Date: Mar-2006
Journal Volume: 20
Journal Issue: 4
Start page/Pages: 932-40
Source: Faseb Journal
Abstract: 
Zinc is an essential nutrient for humans; however, this study demonstrated for the first time that an elevated zinc status, created by culturing cells at optimal plasma zinc concentration attainable by oral zinc supplementation, is cytotoxic for normal human bronchial epithelial (NHBE) cells. p53 plays a central role in the modulation of cell signal transduction in response to the stress from DNA damage, hypoxia and oncogene activation. The present study was designed to determine whether the previously reported increased Gadd45 expression and delayed G2/M cell cycle progression in zinc-supplemented NHBE cells is p53-dependent, and to decipher the mechanisms responsible for the regulation of Gadd45 expressions by p53, and elucidate the Gadd45 functions in impaired cell growth and cell cycle progression in NHBE cells. Cells were cultured for one passage in different concentrations of zinc: <0.4 micromol/L (ZD) as severe zinc-deficient; 4 micromol/L (ZN) as normal zinc level in culture medium; 16 micromol/L (ZA) as normal human plasma zinc level; and 32 micromol/L (ZS) as the high end of plasma zinc attainable by oral supplementation. Inhibition of cell growth and upregulation of p53 mRNA and protein expression were observed in ZS cells. Most importantly, ZS treatment also enhanced Gadd45 nuclear protein level and promoter activity, decreased CDK1-Cyclin B1 level and delayed G2/M cell cycle progression. These changes were normalized to those observed in ZN by treating ZS cells with Pifitherin, an inhibitor of p53 transactivation activity. Thus, our findings support the p53 dependency of the Gadd45-CDK1/Cyclin B1-G2/M cell cycle progression pathway in ZS NHBE cells.
URI: http://scholars.ntou.edu.tw/handle/123456789/1033
ISSN: 0892-6638
Appears in Collections:河海工程學系

Show full item record

Page view(s)

102
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback