http://scholars.ntou.edu.tw/handle/123456789/1038
Title: | Green's Function Problem of Laplace Equation with Spherical and Prolate Spheroidal Boundaries by Using the Null-Field Boundary Integral Equation | Authors: | Yu-Lung Chang Ying-Te Lee Li-Jie Jiang Jeng-Tzong Chen |
Keywords: | Laplace equation;degenerate kernel;null-field boundary integral equation;Green's function;prolate spheroid | Issue Date: | 7-Mar-2016 | Publisher: | World Scientific | Journal Volume: | 13 | Journal Issue: | 5 | Start page/Pages: | 1650020 | Source: | International Journal of Computational Methods | Abstract: | A systematic approach of using the null-field integral equation in conjunction with the degenerate kernel and eigenfunction expansion is employed to solve three-dimensional (3D) Green’s functions of Laplace equation. The purpose of using degenerate kernels for interior and exterior expansions is to avoid calculating the principal values. The adaptive observer system is addressed to employ the property of degenerate kernels in the spherical coordinates and in the prolate spheroidal coordinates. After introducing the collocation points on each boundary and matching boundary conditions, a linear algebraic system is obtained without boundary discretization. Unknown coefficients can be easily determined. Finally, several examples are given to demonstrate the validity of the present approach. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/1038 | ISSN: | 1793-6969 | DOI: | 10.1142/s0219876216500201 |
Appears in Collections: | 河海工程學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.