Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 幫助
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/10909
標題: Improvement of Typhoon Precipitation Forecast Efficiency by Coupling SSM/I Microwave Data with Climatologic Characteristics and Precipitation
作者: Chih-Chiang Wei 
關鍵字: Forecasting;Hydrologic models;Neural networks
公開日期: 1-六月-2013
引用: Wei, Chih-Chiang. "Improvement of typhoon precipitation forecast efficiency by coupling SSM/I microwave data with climatologic characteristics and precipitation." Weather and forecasting 28.3 (2013): 614-630.
卷: 28
期: 3
起(迄)頁: 614–630
來源出版物: Weather and Forecasting
摘要: 
Prediction of flash floods in an accurate and timely fashion is one of the most important challenges in weather prediction. This study aims to address the rainfall prediction problem for quantitative precipitation forecasts over land during typhoons. To improve the efficiency of forecasting typhoon precipitation, this study develops Bayesian network (BN) and logistic regression (LR) models using t...
Prediction of flash floods in an accurate and timely fashion is one of the most important challenges in weather prediction. This study aims to address the rainfall prediction problem for quantitative precipitation forecasts over land during typhoons. To improve the efficiency of forecasting typhoon precipitation, this study develops Bayesian network (BN) and logistic regression (LR) models using three different datasets and examines their feasibility under different rain intensities. The study area is the watershed of the Tanshui River in Taiwan. The dataset includes a total of 70 typhoon events affecting the watershed from 1997 to 2008. For practicability, the three datasets used include climatologic characteristics of typhoons issued by the Central Weather Bureau (CWB), rainfall rates measured using automatic meteorological gauges in the watershed, and microwave data originated from Special Sensor Microwave Imager (SSM/I) radiometers. Five separate BN and LR models (cases), differentiated by a unique combination of input datasets, were tested, and their predicted rainfalls are compared in terms of skill scores including mean absolute error (MAE), RMSE, bias (BIA), equitable threat score (ETS), and precision (PRE). The results show that the case where all three input datasets are used is better than the other four cases. Moreover, LR can provide better predictions than BN, especially in flash rainfall situations. However, BN might be one of the most prominent approaches when considering the ease of knowledge interpretation. In contrast, LR describes associations, not causes, and does not explain the decision.
URI: http://scholars.ntou.edu.tw/handle/123456789/10909
ISSN: 0882-8156
DOI: ://WOS:000320761900006
10.1175/waf-d-12-00089.1
://WOS:000320761900006
://WOS:000320761900006
顯示於:海洋環境資訊系

顯示文件完整紀錄

Page view(s)

104
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋