http://scholars.ntou.edu.tw/handle/123456789/10916
標題: | Comparing single- and two-segment statistical models with a conceptual rainfall-runoff model for river streamflow prediction during typhoons | 作者: | Wei, Chih-Chiang | 關鍵字: | ARTIFICIAL NEURAL-NETWORK;WATER-RESOURCES APPLICATIONS;VARIABLE SELECTION;ISOTONIC REGRESSION;INPUT DETERMINATION;MANAGEMENT;QUALITY;FLOW;IMPROVEMENT;ALGORITHMS | 公開日期: | 十一月-2016 | 出版社: | ELSEVIER SCI LTD | 卷: | 85 | 起(迄)頁: | 112-128 | 來源出版物: | ENVIRON MODELL SOFTW | 摘要: | This study examined various regression-based techniques and an artificial neural network used for streamflow forecasting during typhoons. A flow hydrograph was decomposed into two segments, rising and falling limbs, and the individual segments were modeled using statistical techniques. In addition, a conceptual rainfall runoff model, namely the Public Works Research Institute (PWRI)-distributed hydrological model, and statistical models were compared. The study area was the Tsengwen Reservoir watershed in Southern Taiwan. The data used in this study comprised the observed watershed rainfalls, reservoir inflows, typhoon characteristics, and ground weather data. The forecast horizons ranged from 1 to 12 h. A series of assessments, including statistical analyses and simulations, was conducted. According to the improvements in errors, among single-segment statistical models, the multilayer perceptron achieved superior prediction accurary compared with the regression-based methods. However, the pace regression was the most favorable according to an evaluation of model complexity and accuracy. To examine the robustness of the results for forecast horizons varying from 1 to 12 h, statistical significance tests were performed for the single- and two-segment models. The prediction ability of the two-segment models was superior to that of the single-segment models. In addition, Typhoon Sinlaku in 2008 was considered in a comparison between the conceptual PWRI model output and that of the developed statistical models. The results showed that the PWRI model yielded the least favorable results. (C) 2016 The Author(s). Published by Elsevier Ltd. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/10916 | ISSN: | 1364-8152 | DOI: | 10.1016/j.envsoft.2016.08.013 |
顯示於: | 06 CLEAN WATER & SANITATION 海洋環境資訊系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。