Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 幫助
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1247
標題: A Double Iteration Process for Solving the Nonlinear Algebraic Equations, Especially for Ill-posed Nonlinear Algebraic Equations
作者: Wei-Chung Yeih 
I-Yao Chan
Cheng-Yu Ku 
Chia-Ming Fan 
Pai-Chen Guan 
關鍵字: double iteration process;ill-posed;the modified Tikhnov's regular-ization method
公開日期: 五月-2014
卷: 99
期: 2
起(迄)頁: 123-149
來源出版物: Cmes-Computer Modeling in Engineering & Sciences
摘要: 
In this paper, a novel double iteration process for solving the nonlin-ear algebraic equations is developed. In this process, the outer iteration controls theevolution path of the unknown vector xin the selected direction uwhich is deter-mined from the inner iteration process. For the inner iteration, the direction of evo-lution uis determined by solving a linear algebraic equation: BTBu =BTFwhere...
In this paper, a novel double iteration process for solving the nonlin-ear algebraic equations is developed. In this process, the outer iteration controls theevolution path of the unknown vector xin the selected direction uwhich is deter-mined from the inner iteration process. For the inner iteration, the direction of evo-lution uis determined by solving a linear algebraic equation: BTBu =BTFwhereBis the Jacobian matrix, Fis the residual vector and the superscript “T” denotesthe matrix transpose. For an ill-posed system, this linear algebraic equation is verydifficult to solve since the resulting leading coefficient matrix is ill-posed in nature.We adopted the modified Tikhonov’s regularization method (MTRM) developed byLiu (Liu, 2012) to solve the ill-posed linear algebraic equation. However, to exact-ly find the solution of the evolution direction umay consume too many iterationsteps for the inner iteration process, which is definitely not economic. Therefore,the inner iteration process stops while the direction umakes the value of a0beingsmaller than the selected margin acor when the number of inner iteration stepsexceeds the maximum tolerance Imax. For the outer iteration process, it terminatesonce the root mean square error for the residual is less than the convergence crite-rion εor when the number of inner iteration steps exceeds the maximum toleranceImax. Six numerical examples are given and it is found that the proposed method isvery efficient especially for the nonlinear ill-posed systems.
URI: http://scholars.ntou.edu.tw/handle/123456789/1247
ISSN: 1526-1492
顯示於:河海工程學系

顯示文件完整紀錄

Page view(s)

163
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋