http://scholars.ntou.edu.tw/handle/123456789/16572
標題: | On the free terms of the dual BEM for the two and three-dimensional Laplace problems | 其他標題: | 二維及三維Laplace問題之對偶邊界元素法自由項的研究 | 作者: | Jeng-Tzong Chen Shyh-Rong Kuo Wei-Chih Chen Li-Wei Liu |
關鍵字: | dual boundary integral equations;dual boundary element method;a smooth boundary;free term;Laplace equation | 公開日期: | 1-六月-2000 | 出版社: | 國立臺灣海洋大學 | 卷: | 8 | 期: | 1 | 起(迄)頁: | 8-15 | 來源出版物: | Journal of Marine Science and Technology-Taiwan | 摘要: | A dual integral formulation for the Laplace problem with a smooth boundary is derived by using the contour approach surrounding the singularity. It is found that using the contour approach the jump terms come half and half from the free terms in the L and Mkernel integrations for the two-dimensional case, which is different from the limiting process by approaching an interior point to a boundary point where the jump terms come totally from the L kernel only. The definition of the Hadamard principal value for hypersingular integral at the collocation point of a smooth boundary is extended to a generalized sense for both the tangent and normal derivatives of double-layer potentials in comparison with the conventional definition. For the three dimensional case, the jump terms come one-third and two-thirds from the free terms of L and M kernels, respectively.本文探討Laplace方程式的對偶邊界積分方程之自由項。針對圍繞在平滑邊界上奇異點周圍的半圓(二維)或半球面(三維)積分可導得自由項。在二維問題中,自由項的來源有二,一半來自L核函數,另一半來自M核函數。意即自由項分別由L核函數與M核函數各貢獻一半。這個過程雖不同于極限方法從域內點逼近到邊界點中,跳躍項完全來自L核函數所貢獻,但是最終的結果仍然是相同的。在超奇異積分方程中,阿馬主值的觀念在此從雙層勢能的法向微分推廣到切向微分。有趣的是,在三維問題中,我們發現到自由項分別來自L核函數的三分之一貢獻與M核函數的三分之二貢獻。 |
URI: | http://scholars.ntou.edu.tw/handle/123456789/16572 | ISSN: | 1023-2796 | DOI: | 10.6119/JMST.200006_8(1).0002 |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。