Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16790
DC FieldValueLanguage
dc.contributor.authorC.T. Chenen_US
dc.contributor.authorI.L. Chenen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-05-05T05:41:34Z-
dc.date.available2021-05-05T05:41:34Z-
dc.date.issued2004-12-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16790-
dc.description國立臺灣大學,臺北,中華民國九十三年十二月en_US
dc.description.abstractIn this paper, the eigenproblems with circular boundaries are studied by using null-field integral equations in conjunction with degenerate kernels and Fourier series. Direct-searching scheme is employed to detect the eigenvalues by using singular value decomposition (SVD) technique. It is analytically verified that an inner circle results in the spurious eigenvalue and it appears in the numerical experiment. Also, the spurious eigenequation due to the inner circle is examined. Several examples are demonstrated to see the validity of the present formulation. 本文以勢能理論為基礎,提出以退化核與傅立葉級數展開搭配零場積分方程求解含多孔洞二維特徵值問題,此方法可視為半解析法。邊界未知勢能與流通量使用有限項傅立葉級數來近似求得。利用退化核與傅立葉展開可導得一線性代數方法 而無須對邊界離散。再靠奇異值分解法來求得特徵值及傅立葉係數。文中以幾個不同邊界條件的特徵值問題進行測試。所得結果無論與邊界元素法的數值結果或有限元素法的數值結果比較,均可驗證本方法的正確性。en_US
dc.language.isoen_USen_US
dc.publisherThe 28th National Conference on Theoretical and Applied Mechanicsen_US
dc.subjectnull-field integral equationen_US
dc.subjectsingular value decompositionen_US
dc.subjectdegenerate kernelen_US
dc.subjectFourier seriesen_US
dc.subjecteigenproblemen_US
dc.subject零場積分方程式en_US
dc.subject奇異值分解en_US
dc.subject退化核en_US
dc.subject傅立葉級數en_US
dc.subject特徵值問題en_US
dc.titleA new method for eigenproblems with circular boundariesen_US
dc.title.alternative二維區域含圓洞之特徵值問題的新解法en_US
dc.typeconference paperen_US
dc.relation.conferenceThe 28th National Conference on Theoretical and Applied Mechanicsen_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

87
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback