http://scholars.ntou.edu.tw/handle/123456789/16790
標題: | A new method for eigenproblems with circular boundaries | 其他標題: | 二維區域含圓洞之特徵值問題的新解法 | 作者: | C.T. Chen I.L. Chen Jeng-Tzong Chen |
關鍵字: | null-field integral equation;singular value decomposition;degenerate kernel;Fourier series;eigenproblem;零場積分方程式;奇異值分解;退化核;傅立葉級數;特徵值問題 | 公開日期: | 十二月-2004 | 出版社: | The 28th National Conference on Theoretical and Applied Mechanics | 會議論文: | The 28th National Conference on Theoretical and Applied Mechanics | 摘要: | In this paper, the eigenproblems with circular boundaries are studied by using null-field integral equations in conjunction with degenerate kernels and Fourier series. Direct-searching scheme is employed to detect the eigenvalues by using singular value decomposition (SVD) technique. It is analytically verified that an inner circle results in the spurious eigenvalue and it appears in the numerical experiment. Also, the spurious eigenequation due to the inner circle is examined. Several examples are demonstrated to see the validity of the present formulation. 本文以勢能理論為基礎,提出以退化核與傅立葉級數展開搭配零場積分方程求解含多孔洞二維特徵值問題,此方法可視為半解析法。邊界未知勢能與流通量使用有限項傅立葉級數來近似求得。利用退化核與傅立葉展開可導得一線性代數方法 而無須對邊界離散。再靠奇異值分解法來求得特徵值及傅立葉係數。文中以幾個不同邊界條件的特徵值問題進行測試。所得結果無論與邊界元素法的數值結果或有限元素法的數值結果比較,均可驗證本方法的正確性。 |
描述: | 國立臺灣大學,臺北,中華民國九十三年十二月 |
URI: | http://scholars.ntou.edu.tw/handle/123456789/16790 |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。