http://scholars.ntou.edu.tw/handle/123456789/16792
標題: | REGULARIZED MESHLESS METHOD FOR SOLVING LAPLACE PROBLEMS WITH HOLES | 其他標題: | 正規化無網格法求解含多洞拉普拉斯問題 | 作者: | Jeng-Hong Kao Kue-Hong Chen Jeng-Tzong Chen |
關鍵字: | regularized meshless method;hypersingularity;multiple holes;double layer potential;正規化無網格法;基本解法;超奇異性;多洞;雙層勢能 | 公開日期: | 16-十二月-2005 | 出版社: | The 29th National Conference on Theoretical and Applied Mechanics | 會議論文: | The 29th National Conference on Theoretical and Applied Mechanics | 摘要: | In this paper, a regularized meshless method (RMM) is developed to solve the two-dimension Laplace problem with multiply-connected domain. The solution is represented by using the double layer potential. The source points can be located on the real boundary by using the proposed regularized technique to regularize the singularity and hypersingularity of the kernel functions. The difficulty of the coincidence of the source and collocation points is avoided and thereby the diagonal terms of influence matrices are easily determined. The numerical results demonstrate the accuracy of the solutions after comparing with those of exact solution and BEM for the Dirichlet, Neumann and mixed-type problems with multiple holes. Good agreements are observed.在本論文中,使用正規化無網格法求解二維多連通拉普拉斯問題,利用勢能理論的雙層勢能法疊加出場解。藉由本研究所提出的去奇異技術可將核函數的奇異性與超強奇異性正規化,使得場點與源點可以同時分佈在相同的邊界上,因此可解得影響係數矩陣的主對角線項上的有限值。在本文中舉了Dirichlt、Numann及mixed-type三種邊界條件的多洞問題來測試,由本法所獲得之結果將與解析解及邊界元素法結果做比較,可獲得令人滿意的結果。 |
描述: | December 16-17, 2005, NTHU, Hsinchu, Taiwan, R.O.C. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/16792 |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。