http://scholars.ntou.edu.tw/handle/123456789/16843
標題: | On the equivalence of method of fundamental solutions and Trefftz method for Laplace equation | 其他標題: | Trefftz 法與基本解法之等效性-以拉普拉斯方程為例 | 作者: | Chin-Shen Wu Sheng-Yih Lin Sue-Ray Lin Jeng-Tzong Chen |
公開日期: | 7-三月-2003 | 出版社: | 第十五屆中國造船暨輪機工程研討會及國科會成果發表會 | 會議論文: | 第十五屆中國造船暨輪機工程研討會及國科會成果發表會 | 摘要: | In this paper, it is proved that the two approaches for Laplace problems, known in the literature as the method of fundamental solution (MFS) and the Trefftz method, are mathematically equivalent in spite of their essentially minor and apparent differences in the formulation. It is interesting to find that the T-complete set in the Trefftz method for the interior and exterior problems are imbedded in the degenerate kernels of MFS. By designing a circular-domain problem, the unknown coefficients of each method correlate by a mapping matrix after considering the degenerate kernels for the fundamental solutions in the MFS and the T-complete function in the Trefftz method. The mapping matrix is composed of a rotation matrix and a geometric matrix which depends on the source location. The degenerate scale for the Laplace equation appears using the MFS when the geometric matrix is singular. The ill-posed problem in MFS also stems from the geometric matrix when the fictitious source is distributed far away from the real boundary. Finally, the efficiency of MFS is compared with the Trefftz method under the same number of degrees of freedom. 本文主要以 Trefftz 法與基本解法來探討兩者在數學上之等效性, 並由文中可得知 Trefftz的完整解集合不論是在內域問題或外域問題皆可由基本解法中的退化核函數中求得。文中設計一個圓形範例做說明,利用退化核函數展開基本解所得到之係數矩陣與 Trefftz 法中所得到之係數矩陣相互比較後,可產生一映射矩陣。此映射矩陣根據源點的位置分佈所構成並可分解為一旋轉矩陣與幾何矩陣。在拉普拉斯問題中,我們可藉由幾何矩陣之奇異性說明在基本解法中退化尺度問題所產生的機制,並且當虛擬源點與實際邊界相差甚遠時所發生矩陣病態行為,亦可由此看出。最後,本文在相同自由度數目的情況下,對於兩者的收斂速率的優劣亦作探討。 |
描述: | 國立高雄海洋技術學院 民國 92 年 3 月 7-8 日 |
URI: | http://scholars.ntou.edu.tw/handle/123456789/16843 |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。