http://scholars.ntou.edu.tw/handle/123456789/16980
標題: | Representation-burden conservation network applied to learning VQ |
作者: | Jung-Hua Wang Hsiao, CP |
關鍵字: | competitive learning;conscience principle;self-creating neural networks;self-organizing maps;vector quantization |
公開日期: | 六月-1997 |
出版社: | KLUWER ACADEMIC PUBL |
卷: | 5 |
期: | 3 |
起(迄)頁: | 209-217 |
來源出版物: | NEURAL PROCESSING LETTERS |
摘要: | A self-creating network effective in learning vector quantization, called RCN (Representation-burden Conservation Network) is developed. Each neuron in RCN is characterized by a measure of representation-burden. Conservation is achieved by bounding the summed representation-burden of all neurons at constant 1, as representation-burden values of all neurons are updated after each input presentation... |
URI: | http://scholars.ntou.edu.tw/handle/123456789/16980 |
ISSN: | 1370-4621 |
DOI: | 10.1023/A:1009651012418 |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。