http://scholars.ntou.edu.tw/handle/123456789/17030
標題: | Scale Equalized Higher-order Neural Networks | 作者: | Chien-Ming Lin Keng-Hsuan Wu Jung-Hua Wang |
公開日期: | 十月-2005 | 出版社: | IEEE | 會議論文: | 2005 IEEE International Conference on Systems, Man and Cybernetics Waikoloa, HI, USA |
摘要: | This paper presents a novel network, called scale equalized higher order neural network (SEHNN) based on concept of scale equalization (SE). We show that SE is particularly useful in alleviating the scale divergence problem that plagues higher order networks. SE comprises two main processes: setting the initial weight vector and conducting the matrix transformation. An illustrative embodiment of SEHNN is built on the Sigma-Pi network (SPN) applied to task of function approximation. Empirical results verify that SEHNN outperforms other higher order networks in terms of computation efficiency. Compared to SPN, and Pi-Sigma network (PSN), SEHNN requires less number of epochs to complete the training process. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/17030 | ISSN: | 1062-922X | DOI: | 10.1109/ICSMC.2005.1571247 |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。