Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 水產養殖學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17762
Title: Polyculture of Juvenile Dog Conch Laevistrombus canarium Reveals High Potentiality in Integrated Multitrophic Aquaculture (IMTA)
Authors: Chang, Yung-Cheng
Ma, Chia-Huan
Lee, Hung-Tai
Hsu, Te-Hua 
Keywords: APOSTICHOPUS-JAPONICUS SELENKA;SEA-URCHIN;FEEDING PREFERENCES;MERAMBONG SHOAL;1758 MOLLUSCA;LINNAEUS;SALINITY;GASTROPODA;SEAWEED;GROWTH
Issue Date: Aug-2021
Publisher: MDPI
Journal Volume: 10
Journal Issue: 8
Source: BIOLOGY-BASEL
Abstract: 
Simple Summary The dog conch (Laevistrombus canarium) is a marine gastropod mollusk widely distributed in the Indo-Pacific region. It is an economically crucial species; however, its population has been declining due to overfishing and overexploitation. Hence, we developed a novel polyculture and water-flow method for mass production of this species. Furthermore, the findings from this work also uncover the potentiality of L. canarium in integrated multitrophic aquaculture (IMTA) and its implication for aquaculture and resource restoration. Laevistrombus canarium, also known as dog conch, is a marine gastropod mollusk widely distributed in the Indo-Pacific region. It is an economically crucial species; however, its population has been declining due to overfishing and overexploitation. In this study, the suitable salinity for juvenile L. canarium was between 20 and 35 parts per thousand. Diatoms and biological detritus by using flow-water from the fish pool were the most favorable diets for newly metamorphosed and 10 mm juveniles. In the polyculture experiment, L. canarium was cultured with whiteleg shrimp, tilapia, small abalone, purple sea urchin, and collector urchin. Better growth was found in all co-culture groups except with whiteleg shrimp. We also found that the polyculture system with or without substrates significantly affected the growth of juveniles. Additionally, we observed that water temperature was the most crucial factor for growth and survival; a water temperature of less than 10 degrees C might cause the death of L. canarium. We have proposed a novel polyculture and water-flow method for mass production of L. canarium and evaluated the feasibility and benefits of polyculture with other species. The findings from this work reveal the potentiality of L. canarium in integrated multitrophic aquaculture (IMTA) and its implication for aquaculture and resource restoration.
URI: http://scholars.ntou.edu.tw/handle/123456789/17762
ISSN: 2079-7737
DOI: 10.3390/biology10080812
Appears in Collections:水產養殖學系
14 LIFE BELOW WATER

Show full item record

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

19
Last Week
0
Last month
1
checked on Oct 13, 2022

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback