http://scholars.ntou.edu.tw/handle/123456789/17861
標題: | 鷹群掠食演算法於全域最佳化設計之應用 | 其他標題: | An Eagle-Foraging Algorithm for Global Optimizations | 作者: | 郭信川 吳俊仁 陳慶忠 |
關鍵字: | 族群式演算法;鷹群掠食演算法;全域最佳化;Population-Based Algorithm;Eagle-Foraging Algorithm;Particle Swarm Optimization PSO;Global Optimization | 公開日期: | 1-五月-2019 | 出版社: | 中國造船暨輪機工程師學會 | 卷: | 28 | 期: | 2 | 起(迄)頁: | 95 - 105 | 來源出版物: | 中國造船暨輪機工程學刊 | 摘要: | The biological behaviors in life have usually inspired the development of creative evolution computation algorithms, such as Ant Colony Optimization and Particle Swarm Optimization. According to eagle's four distinctive foraging behaviors, searching, exploring, striking,and killing, we proposed a population-based evolution computation technique called as Eagle-Foraging Algorithm (EFA) in the paper. The developed algorithm is completed under the frameworks of adopting the Particle Swarm Optimization (PSO), a space identification scheme, and a local search technique of the Hooke-Jeeves method. Eight benchmark test problems with different functional characteristics have been selected to validate the proposed EFA performance. In each tested problem, two respective 10 and 30 variables were used in the computation. The results demonstrate that the EF A can secure the solutions of all eight benchmark problems with high performance comparing several variants of PSO in references [13, 30]. Finally, in application, the EFA has been employed to optimize the structural design of a cantilevered beam.近年來,於演化計算領域中,仿生物行爲開發演算法如蟻群演算法與粒子群演算法越趨普遍。本文根據生態學者觀察食魚鷹掠食行爲,搜索、探親、俯衝入水與掠取魚獵物等四個步驟,發展一套族群式進化演算法,稱之爲鷹群掠食演算法(eagle-foraging algorithm, EFA)。本演算法架構整合粒子群演算法(particle swarm optimization, PSO)、空間鑑定法(space-identification scheme, SIS)W區域搜尋法(local search method)。 本文首先選取8種標竿函數問題以驗証本演算法之可靠性與效益性。測試結果顯示,於10與30維的問題之全域最佳解均可求得,除了有相當好的搜尋性能,而且比文獻[13, 30]比較佳。最後,本文將鷹群掠食演算法應用懸臂樑結構工程問題之最佳化設計。 |
URI: | http://scholars.ntou.edu.tw/handle/123456789/17861 |
顯示於: | 系統工程暨造船學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。