http://scholars.ntou.edu.tw/handle/123456789/19272
標題: | Differential evolutionary conservation of motif modes in a yeast protein interaction network | 作者: | Wei-Po Lee Bing-Chiang Jeng Tun-Wen Pai Chin-Pei Tsai Chang-Yung Yu Wen-Shyong Tzou |
公開日期: | 四月-2006 | 出版社: | BMC Genomics | 卷: | 7 | 期: | 89 | 摘要: | Background The importance of a network motif (a recurring interconnected pattern of special topology which is over-represented in a biological network) lies in its position in the hierarchy between the protein molecule and the module in a protein-protein interaction network. Until now, however, the methods available have greatly restricted the scope of research. While they have focused on the analysis in the resolution of a motif topology, they have not been able to distinguish particular motifs of the same topology in a protein-protein interaction network. Results We have been able to assign the molecular function annotations of Gene Ontology to each protein in the protein-protein interactions of Saccharomyces cerevisiae. For various motif topologies, we have developed an algorithm, enabling us to unveil one million "motif modes", each of which features a unique topological combination of molecular functions. To our surprise, the conservation ratio, i.e., the extent of the evolutionary constraints upon the motif modes of the same motif topology, varies significantly, clearly indicative of distinct differences in the evolutionary constraints upon motifs of the same motif topology. Equally important, for all motif modes, we have found a power-law distribution of the motif counts on each motif mode. We postulate that motif modes may very well represent the evolutionary-conserved topological units of a protein interaction network. Conclusion For the first time, the motifs of a protein interaction network have been investigated beyond the scope of motif topology. The motif modes determined in this study have not only enabled us to differentiate among different evolutionary constraints on motifs of the same topology but have also opened up new avenues through which protein interaction networks can be analyzed. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/19272 | DOI: | 10.1186/1471-2164-7-89 |
顯示於: | 生命科學暨生物科技學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。