http://scholars.ntou.edu.tw/handle/123456789/20175
標題: | Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition | 作者: | Yen, Chih-Ta Liao, Jia-Xian Huang, Yi-Kai |
關鍵字: | wearable device;human activity recognition (HAR);inertial sensor;deep-learning;convolutional neural network (CNN);feature fusion | 公開日期: | 1-十二月-2021 | 出版社: | MDPI | 卷: | 21 | 期: | 24 | 來源出版物: | SENSORS | 摘要: | This paper presents a wearable device, fitted on the waist of a participant that recognizes six activities of daily living (walking, walking upstairs, walking downstairs, sitting, standing, and laying) through a deep-learning algorithm, human activity recognition (HAR). The wearable device comprises a single-board computer (SBC) and six-axis sensors. The deep-learning algorithm employs three parallel convolutional neural networks for local feature extraction and for subsequent concatenation to establish feature fusion models of varying kernel size. By using kernels of different sizes, relevant local features of varying lengths were identified, thereby increasing the accuracy of human activity recognition. Regarding experimental data, the database of University of California, Irvine (UCI) and self-recorded data were used separately. The self-recorded data were obtained by having 21 participants wear the device on their waist and perform six common activities in the laboratory. These data were used to verify the proposed deep-learning algorithm on the performance of the wearable device. The accuracy of these six activities in the UCI dataset and in the self-recorded data were 97.49% and 96.27%, respectively. The accuracies in tenfold cross-validation were 99.56% and 97.46%, respectively. The experimental results have successfully verified the proposed convolutional neural network (CNN) architecture, which can be used in rehabilitation assessment for people unable to exercise vigorously. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/20175 | DOI: | 10.3390/s21248294 |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。