http://scholars.ntou.edu.tw/handle/123456789/20538
標題: | DNA engineered copper oxide-based nanocomposites with multiple enzyme-like activities for specific detection of mercury species in environmental and biological samples | 作者: | Lien, Chia-Wen Yu, Po-Hsiung Chang, Huan-Tsung Hsu, Pang-Hung Wu, Tsunghsueh Lin, Yang-Wei Huang, Chih-Ching Lai, Jui-Yang |
關鍵字: | PEROXIDASE-LIKE ACTIVITY;COLORIMETRIC DETECTION;SELECTIVE DETECTION;GOLD NANOPARTICLES;NONCOMPETITIVE INHIBITION;NANO-SELENIUM;FLUORESCENT;PLATINUM;ASSAY;IONS | 公開日期: | 25-十一月-2019 | 出版社: | ELSEVIER | 卷: | 1084 | 起(迄)頁: | 106-115 | 來源出版物: | ANAL CHIM ACTA | 摘要: | In this paper, we report the synthesis and application of enzyme-like DNA-copper oxide/platinum nanoparticles for the separate quantification of inorganic and organomercury species in various real samples. We synthesized a series of poly(thymine) (T-60)-copper oxide/metal nanocomposites (T-60-CuxO/M NCs; M =Au, Ag or Pt) that exhibited enzyme-like activities [oxidase (OX), peroxidase (POX), and catalase (CAT)]. The enzyme-like activities are tunable due to the incorporation of various metals into the NCs. Among a series of synthesized CuxO/M NCs, T-60-copper oxide-platinum nanocomposites (T-60-CuxO/Pt NCs) exhibited the highest OX-like activity via the O-2-mediated oxidation of substrates, such as Amplex Red (AR), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), o-phenylenediamine (OPD), and 3,3',5,5'-tetramethylbenzidine (TMB), to form fluorescent or colored products. Interestingly, inorganic mercury ions (Hg2+) and organomercury species, such as methylmercury (MeHg+), ethylmercury (EtHg+), and phenylmercury (PhHg+), significantly inhibited the OX-like activity of T-60-CuxO/Pt NCs. For the selective detection of mercury species, we used ABTS in the T-60-CuxO/Pt NCs system, and the ABTS/T-60-CuxO/Pt NCs-based assay allowed for the detection of mercury ions at nanomolar concentrations based on the decrease in the catalytic activity caused by the mercury ions. To separately quantify the inorganic and organomercury species in a sample, we employed selenium nanoparticles (Se NPs) as a masking agent, as they preferentially bind with inorganic mercury species. The ABTS/T-60-CuxO/Pt NCs-based assay with the masking agent of Se NPs further provided specificity for the detection of organomercury species in environmental water samples (tap water, river water, and seawater) and fish muscle samples (dogfish muscle DORM-II). (C) 2019 Elsevier B.V. All rights reserved. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/20538 | ISSN: | 0003-2670 | DOI: | 10.1016/j.aca.2019.08.009 |
顯示於: | 生命科學暨生物科技學系 06 CLEAN WATER & SANITATION |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。