http://scholars.ntou.edu.tw/handle/123456789/21861
標題: | Rise time of the 2018 M-W 6.4 Hualien earthquake revealed by source time functions: A restrictive estimation of static stress drop | 作者: | Hwang, Ruey-Der Huang, Yi-Ling Chang, Wen-Yen Lin, Chiung-Yao Lin, Cai-Yi Chang, Jo-Pan |
關鍵字: | 2018 Hualien earthquake;Source time function;Rise time;Dynamic stress drop;Static stress drop;Available energy | 公開日期: | 1-六月-2022 | 出版社: | ELSEVIER | 卷: | 327 | 來源出版物: | PHYSICS OF THE EARTH AND PLANETARY INTERIORS | 摘要: | Using the omega(-2) source model, the rise time of the 2018 Mw 6.4 Hualien earthquake is estimated from the corner frequency of the Fourier spectrum of the source time function. Two source parameters are also determined: average dynamic stress drop (?sigma(d)) and static stress drop (?sigma(s)). The results show that the rise time is 2.52 s, which is approximately 0.23 times the value of the entire source duration and then leads to a ?sigma(d) of 3.03 MPa. In this study, we propose a method to confine the estimation of ?sigma(s) through ?sigma(d). Because the radiated seismic energy exists, this leads to & nbsp;?sigma(2)< 2 delta sigma(d )- 2 mu Eg/M-0(Eg is the fracture energy, M-0 is the seismic moment, and mu is the rigidity) on average. Hence, we suggest that ?sigma s for the 2018 Hualien earthquake should be less than 4.81 MPa. Because of ?sigma(s) > ?sigma(d), the earthquake's rupture can be interpreted in a frictional overshoot model; then, the radiation efficiency near 0.5 suggests that 50% of the available energy is released to extend the fault. Furthermore, the lower fracture energy density (G) for the Hualien earthquake is probably due to the fact that an ML 5.9 foreshock disturbs the fault system beforehand. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/21861 | ISSN: | 0031-9201 | DOI: | 10.1016/j.pepi.2022.106878 1872-7395 |
顯示於: | 地球科學研究所 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。