http://scholars.ntou.edu.tw/handle/123456789/22089
標題: | Bio-inspired contour extraction via EM-driven deformable and rotatable directivity-probing mask | 作者: | Wang, Jung-Hua Huang, Ren-Jie Wang, Ting-Yuan |
公開日期: | 19-七月-2022 | 出版社: | NATURE PORTFOLIO | 卷: | 12 | 期: | 1 | 來源出版物: | SCIENTIFIC REPORTS | 摘要: | This paper presents a novel bio-inspired edge-oriented approach to perceptual contour extraction. Our method does not rely on segmentation and can unsupervised learn to identify edge points that are readily grouped, without invoking any connecting mechanism, into object boundaries as perceived by human. This goal is achieved by using a dynamic mask to statistically assess the inter-edge relations and probe the principal direction that acts as an edge-grouping cue. The novelty of this work is that the mask, centered at a target pixel and driven by EM algorithm, can iteratively deform and rotate until it covers pixels that best fit the Bayesian likelihood of the binary class w.r.t a target pixel. By creating an effect of enlarging receptive field, contiguous edges of the same object can be identified while suppressing noise and textures, the resulting contour is in good agreement with gestalt laws of continuity, similarity and proximity. All theoretical derivations and parameters updates are conducted under the framework of EM-based Bayesian inference. Issues of stability and parameter uncertainty are addressed. Both qualitative and quantitative comparison with existing approaches proves the superiority of the proposed method in terms of tracking curved contours, noises/texture resilience, and detection of low-contrast contours. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22089 | ISSN: | 2045-2322 | DOI: | 10.1038/s41598-022-16040-6 |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。