http://scholars.ntou.edu.tw/handle/123456789/22539
標題: | Improving measurement invariance assessments in survey research with missing data by novel artificial neural networks |
作者: | Liang-Ting Tsai Chih-Chien Yang |
關鍵字: | CONFIRMATORY FACTOR-ANALYSIS;MIMIC-MODEL;TESTS |
公開日期: | 九月-2012 |
出版社: | ERGAMON-ELSEVIER SCIENCE LTD |
卷: | 39 |
期: | 12 |
起(迄)頁: | 10456-10464 |
來源出版物: | EXPERT SYSTEMS WITH APPLICATIONS |
摘要: | This study proposes the learning vector quantization estimated stratum weight (LVQ-ESW) method to interpolate missing group membership and weights in identifying the accuracy of measurement invariance (MI) in a stratified sampling survey. Survey data is rife with missing information, such as gender and race, which is critical for identifying MI, and in ensuring that conclusions from large-scale te... |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22539 |
ISSN: | 0957-4174 |
DOI: | 10.1016/j.eswa.2012.02.048 |
顯示於: | 教育研究所 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。