http://scholars.ntou.edu.tw/handle/123456789/22633
標題: | 學習向量量化網路之模擬研究 | 其他標題: | A Simulation Study on Classified Accuracy for Learning Vector Quantization | 作者: | 蔡良庭 楊志堅 |
關鍵字: | 類神經網路;學習向量量化網路;截尾常態分配;Neural Network;Learning Vector Quantization;Truncated Normal Distribution | 公開日期: | 十二月-2004 | 出版社: | 臺中教育大學教育測驗統計研究所 | 卷: | 12 | 起(迄)頁: | 269 - 291 | 來源出版物: | 測驗統計年刊 | 摘要: | 本研究採電腦模擬探討不同訓練範例樣本數、學習速率及隱藏層個數對學習向量量化網路分類正確率之影響。在實驗設計上,先產生三種混合樣本資料,以比較在各種不同的實驗設計下,學習向量量化網路分類正確性之差異。結果發現不論為何種混合樣本資料,分類正確率會隨著訓練範例樣本數的增加而呈現遞增的趨勢。在學習速率方面則有一共同點為當學習速率0.1時,其模式之分類效果都是最差的;其餘學習速率的分類表現並無規則可循,亦無表現突出者。但當以不同隱藏層處理單元數進行模擬試驗所得結果,以隱藏層個數為2時,分類正確率都是最佳的。 The purpose of this study was to explore the effect of the different training samples, learning rate and numbers of hidden layers on the classified accuracy when using Learning vector Quantization to analysis. When the number of the training samples were on the two numbers, 200 and 250, the classified accuracy was irregular, and the difference between these two number was not significant. As a result, the classified accuracy of training samples were increasing while the training samples were increasing. By using the simulation testing method to compare the accuracy of learning rate, in any kind of mixed samples, when the learning rate was on 0.1, the classified accuracy was the worst; however the classified accuracy from other learning rates was irregular. When the number of hidden layers was 2, the classified accuracy was the best in any kind of mixed samples. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22633 | ISSN: | 1728-8231 | DOI: | 10.6773/JRMS.200412.0269 |
顯示於: | 教育研究所 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。