http://scholars.ntou.edu.tw/handle/123456789/22749
Title: | Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires | Authors: | Cheng-Ying Chen Jose Ramon Duran Retamal I-Wen Wu Der-Hsien Lien Ming-Wei Chen Yong Ding Yu-Lun Chueh Chih-I Wu Jr-Hau He |
Keywords: | ZNO NANOWIRE;N-TYPE;SCHOTTKY CONTACTS;ELECTRICAL-PROPERTIES;SNO2 NANOWIRES;WORK FUNCTION;PHOTODETECTORS;SEMICONDUCTOR;ENHANCEMENT;SENSORS | Issue Date: | Oct-2012 | Publisher: | American Chemical Society | Journal Volume: | 6 | Journal Issue: | 11 | Start page/Pages: | 9366-9372 | Source: | ACS nano | Abstract: | We in situ probed the surface band bending (SBB) by ultraviolet photoelectron spectroscopy (UPS) in conjunction with field-effect transistor measurements on the incompletely depleted ZnO nanowires (NWs). The diameter range of the NWs is ca. 150–350 nm. Several surface treatments (i.e., heat treatments and Au nanoparticle (NP) decoration) were conducted to assess the impact of the oxygen adsorbates on the SBB. A 100 °C heat treatment leads to the decrease of the SBB to 0.74 ± 0.15 eV with 29.9 ± 3.0 nm width, which is attributed to the removal of most adsorbed oxygen molecules from the ZnO NW surfaces. The SBB of the oxygen-adsorbed ZnO NWs is measured to be 1.53 ± 0.15 eV with 43.2 ± 2.0 nm width. The attachment of Au NPs to the NW surface causes unusually high SBB (2.34 ± 0.15 eV with the wide width of 53.3 ± 1.6 nm) by creating open-circuit nano-Schottky junctions and catalytically … |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22749 | ISSN: | 1936-0851 | DOI: | 10.1021/nn205097e |
Appears in Collections: | 光電與材料科技學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.