http://scholars.ntou.edu.tw/handle/123456789/23022
標題: | Kinetic Growth of Self-Formed In2O3 Nanodots via Phase Segregation: Ni/InAs System | 作者: | Chin-Hung Liu Szu-Ying Chen Cheng-Ying Chen Jr-Hau He Lih-Juann Chen Johnny C Ho Yu-Lun Chueh |
關鍵字: | GAS SENSORS;OXIDE;INDIUM;FILMS;NANOPARTICLES;NANOCRYSTALS;TRANSPARENT;TEMPERATURE;ELECTRONICS;FABRICATION | 公開日期: | 八月-2011 | 出版社: | American Chemical Society | 卷: | 5 | 期: | 8 | 起(迄)頁: | 6637-6642 | 來源出版物: | ACS nano | 摘要: | Highly compact In2O3 nanodots with uniform size were synthesized by a novel approach via direct annealing of Ni/InAs samples at temperatures over 250 °C. The In2O3 nanodots were formed by solid diffusion between nickel and indium arsenide (InAs) and phase segregation via a catalyst-assisted kinetic process. By controlling the annealing time and ambient conditions, the size and density of In2O3 nanodots can be controlled. From photoluminescence (PL) measurements, two distinct peaks located at ∼430 and ∼850 nm, corresponding to 2.9 and 1.5 eV for In2O3 nanodots, can be observed. The peaks originate from radioactive recombination centers such as oxygen vacancies or indium interstitials inside In2O3 nanodots. The periodic array of Ni microdiscs with diameters and interdisc spacing of ∼5 and ∼10 μm on InAs substrate surface prepared by a photolithography process demonstrated the precise control of In2O3 nanodots at a specific position. Applications for precisely locating optoelectronic nanodevices in combination with electronic nanodevices are envisioned. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/23022 | ISSN: | 1936-0851 | DOI: | 10.1021/nn202109u |
顯示於: | 光電與材料科技學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。