http://scholars.ntou.edu.tw/handle/123456789/23604
標題: | Gradient Boosting over Linguistic-Pattern-Structured Trees for Learning Protein-Protein Interaction in the Biomedical Literature |
作者: | Warikoo, Neha Chang, Yung-Chun Ma, Shang-Pin |
關鍵字: | protein-protein interaction;natural language processing;gradient-tree boosting;linguistic patterns;bioinformatics |
公開日期: | 1-十月-2022 |
出版社: | MDPI |
卷: | 12 |
期: | 20 |
來源出版物: | APPLIED SCIENCES-BASEL |
摘要: | Protein-based studies contribute significantly to gathering functional information about biological systems; therefore, the protein-protein interaction detection task is one of the most researched topics in the biomedical literature. To this end, many state-of-the-art systems using syntactic tree kernels (TK) and deep learning have been developed. However, these models are computationally complex ... |
URI: | http://scholars.ntou.edu.tw/handle/123456789/23604 |
DOI: | 10.3390/app122010199 |
顯示於: | 資訊工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。