http://scholars.ntou.edu.tw/handle/123456789/2367
標題: | Computation of dynamic stiffness and flexibility for arbitrarily shaped two-dimensional membranes | 作者: | Jeng-Tzong Chen Chung, I. L. |
關鍵字: | dynamic stiffness and flexibility;an efficient mixed-part dual BEM;overdetermined system | 公開日期: | 25-四月-2002 | 出版社: | Techno Press | 卷: | 13 | 期: | 4 | 起(迄)頁: | 437-453 | 來源出版物: | Structural Engineering and Mechanics | 摘要: | In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of numerical instability due to division by zero is avoided by choosing additional constraints from the information of real and imaginary parts in the dual formulation. For the overdetermined system, the least squares method is considered to determine the dynamic stiffness and flexibility. A general purpose program has been developed to test several examples including circular and square cases. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/2367 | ISSN: | 1598-6217 | DOI: | 10.12989/sem.2002.13.4.437 |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。