http://scholars.ntou.edu.tw/handle/123456789/23739
標題: | Challenges and implications of predicting the spatiotemporal distribution of dengue fever outbreak in Chinese Taiwan using remote sensing data and deep learning |
作者: | Anno, Sumiko Tsubasa, Hirakawa Sugita, Satoru Yasumoto, Shinya Lee, Ming-An Sasaki, Yoshinobu Oyoshi, Kei |
關鍵字: | Deep learning;U-Net;dengue fever;spatiotemporal distribution |
公開日期: | 14-一月-2023 |
出版社: | TAYLOR & FRANCIS LTD |
來源出版物: | GEO-SPATIAL INFORMATION SCIENCE |
摘要: | Ongoing climate change has accelerated the outbreak and expansion of climate-sensitive infectious diseases such as dengue fever. Dengue fever will remain a threat until safe and effective vaccines and antiviral drugs have been developed, distributed, and administered on a global scale. By predicting the spatiotemporal distribution of dengue fever outbreaks, we can effectively implement dengue feve... |
URI: | http://scholars.ntou.edu.tw/handle/123456789/23739 |
ISSN: | 1009-5020 |
DOI: | 10.1080/10095020.2022.2144770 |
顯示於: | 環境生物與漁業科學學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。