Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23788
Title: Carnosic acid attenuated cytochrome c release through the mitochondrial structural protein Mic60 by PINK1 in SH-SY5Y cells
Authors: Lin, Chia-Yuan 
Huang, Yi-Chen
Wu, Chi-Rei
Wu, Han-Ting
Fu, Ru-Huei
Tsai, Chia-Wen
Keywords: Carnosic acid; Mic60; PINK1-mediated mitophagy; PKA; Parkinson's disease;Mic60;PINK1-mediated mitophagy;PKA;Parkinson's disease
Issue Date: Mar-2023
Publisher: PERGAMON-ELSEVIER SCIENCE
Journal Volume: 173
Source: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
Abstract: 
Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.
URI: http://scholars.ntou.edu.tw/handle/123456789/23788
ISSN: 02786915
DOI: 10.1016/j.fct.2023.113636
Appears in Collections:食品科學系

Show full item record

Page view(s)

119
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback