Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25257
標題: Detecting Low-Yield Machines in Batch Production Systems Based on Observed Defective Pieces
作者: Adipraja, Philip F. E.
Chang, Chin-Chun 
Yang, Hua-Sheng
Wang, Wei-Jen
Liang, Deron
關鍵字: Production;Yield estimation;Maintenance engineering;Prognostics and health management;Batch production systems;Reliability;Maximum likelihood estimation;Batch production;expectation-maximization (EM) algorithm;machine mainten
公開日期: 2024
出版社: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
來源出版物: IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
摘要: 
In batch production systems, detecting low-yield machines is essential for minimizing the production of defective pieces, which is a complex problem that currently requires multiple experts, considerable capital, or a combination of both to overcome. To solve this problem, we proposed a cost-efficient and straightforward method that involves using maximum likelihood estimation and bootstrap confidence intervals to estimate per-machine yield; this method enables identification of low-yield machines and generation of a list of these machines. Manufacturing engineers can use the list to perform necessary verification and maintenance processes. Before implementing this method, a manufacturer with 50-500 machines should build a dataset containing approximately 6-20 times as many batches as there are production machines. When this condition is met, the proposed method can be used effectively to detect up to five low-yield machines.
URI: http://scholars.ntou.edu.tw/handle/123456789/25257
ISSN: 2168-2216
DOI: 10.1109/TSMC.2024.3374393
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

86
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback