http://scholars.ntou.edu.tw/handle/123456789/25490
標題: | Maximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigation | 作者: | Biswal, Amita Jwo, Dah-Jing |
關鍵字: | extended Kalman filter;maximum correntropy criterion (MCC);fixed-point iteration;nonlinear regression | 公開日期: | 2024 | 出版社: | MDPI | 卷: | 14 | 期: | 17 | 來源出版物: | APPLIED SCIENCES-BASEL | 摘要: | One technique that is widely used in various fields, including nonlinear target tracking, is the extended Kalman filter (EKF). The well-known minimum mean square error (MMSE) criterion, which performs magnificently under the assumption of Gaussian noise, is the optimization criterion that is frequently employed in EKF. Further, if the noises are loud (or heavy-tailed), its performance can drastically suffer. To overcome the problem, this paper suggests a new technique for maximum correntropy EKF with nonlinear regression (MCCEKF-NR) by using the maximum correntropy criterion (MCC) instead of the MMSE criterion to calculate the effectiveness and vitality. The preliminary estimates of the state and covariance matrix in MCKF are provided via the state mean vector and covariance matrix propagation equations, just like in the conventional Kalman filter. In addition, a newly designed fixed-point technique is used to update the posterior estimates of each filter in a regression model. To show the practicality of the proposed strategy, we propose an effective implementation for positioning enhancement in GPS navigation and radar measurement systems. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/25490 | DOI: | 10.3390/app14177657 |
顯示於: | 通訊與導航工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。