http://scholars.ntou.edu.tw/handle/123456789/2961
Title: | Identifying heat conductivity and source functions for a nonlinear convective-diffusive equation by energetic boundary functional methods | Authors: | Chein-Shan Liu Han-Taw Chen Jiang-Ren Chang |
Issue Date: | 16-Jun-2020 | Publisher: | Taylor & Francis | Journal Volume: | 78 | Journal Issue: | 4 | Start page/Pages: | 248-264 | Source: | Numerical Heat Transfer Part B-Fundamentals | Abstract: | In the article, we solve the inverse problems to recover unknown space-time dependent functions of heat conductivity and heat source for a nonlinear convective-diffusive equation, without needing of initial temperature, final time temperature, and internal temperature data. After adopting a homogenization technique, a set of spatial boundary functions are derived, which satisfy the homogeneous boundary conditions. The homogeneous boundary functions and zero element constitute a linear space, and then a new energetic functional is derived in the linear space, which preserves the time-dependent energy. The linear systems and iterative algorithms to recover the unknown parameters with energetic boundary functions as the bases are developed, which are convergent fast at each time marching step. The data required for the recovery of unknown functions are parsimonious, including the boundary data of temperatures and heat fluxes and the boundary data of unknown functions to be recovered. The accuracy and robustness of present methods are confirmed by comparing the exact solutions with the identified results, which are obtained under large noisy disturbance. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/2961 | ISSN: | 1040-7790 | DOI: | 10.1080/10407790.2020.1777790 |
Appears in Collections: | 系統工程暨造船學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.