http://scholars.ntou.edu.tw/handle/123456789/4863
Title: | Neural network-based geometry classification for navigation satellite selection | Authors: | Dah-Jing Jwo Lai, C. C. |
Keywords: | GPS;GDOP;Classification | Issue Date: | May-2003 | Publisher: | Cambridge University Press | Journal Volume: | 56 | Journal Issue: | 2 | Start page/Pages: | 291 - 304 | Source: | The Journal of Navigation | Abstract: | The neural networks (NN)-based geometry classification for good or acceptable navigation satellite subset selection is presented. The approach is based on classifying the values of satellite Geometry Dilution of Precision (GDOP) utilizing the classification-type NNs. Unlike some of the NNs that approximate the function, such as the back-propagation neural network (BPNN), the NNs here are employed as classifiers. Although BPNN can also be employed as a classifier, it takes a long training time. Two other methods that feature a fast learning speed will be implemented, including Optimal Interpolative (OI) Net and Probabilistic Neural Network (PNN). Simulation results from these three neural networks are presented. The classification performance and computational expense of neural network-based GDOP classification are explored. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/4863 | ISSN: | 0373-4633 | DOI: | 10.1017/s0373463303002200 |
Appears in Collections: | 通訊與導航工程學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.