http://scholars.ntou.edu.tw/handle/123456789/4988
標題: | Analysis and comparison of aircraft landing control using recurrent neural networks and genetic algorithms approaches | 作者: | Jih-Gau Juang Hou-Kai Chiou Li-Hsiang Chien |
關鍵字: | Automatic landing system;Recurrent neural networks;Genetic algorithms;Wind disturbance | 公開日期: | 十月-2008 | 卷: | 71 | 期: | 16-18 | 起(迄)頁: | 3224-3238 | 來源出版物: | Neurocomputing | 摘要: | This paper presents an intelligent aircraft automatic landing controller that uses recurrent neural networks (RNN) with genetic algorithms (GAs) to improve the performance of conventional automatic landing system (ALS) and guide the aircraft to a safe landing. Real-time recurrent learning (RTRL) is applied to train the RNN that uses gradient-descent of the error function with respect to the weights to perform the weights updates. Convergence analysis of system error is provided. The control scheme utilizes five crossover methods of GAs to search optimal control parameters. Simulations show that the proposed intelligent controller has better performance than the conventional controller. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/4988 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2008.04.044 |
顯示於: | 通訊與導航工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。