http://scholars.ntou.edu.tw/handle/123456789/4994
標題: | Recurrent Network and Recursive Estimation Methods for State Space Modeling | 作者: | Jih-Gau Juang Lin, Bo-Shian Chien, Li-Hsiang |
關鍵字: | Parameters estimation;Hybrid intelligent methods;Recurrent neural network;Recursive least-squares;Genetic algorithm | 公開日期: | 一月-2012 | 卷: | 15 | 期: | 1 | 起(迄)頁: | 413-425. | 來源出版物: | Information-an International Interdisciplinary Journal | 摘要: | State space mpdeling for npnlinear and time-varying systems using hybrid intelligent methods is presnted A recurrent neural network and several recursive parameter estimation methods are utilized in this study.Convergence property of the recurrent network is first evaluated.Then the proposed method is implemented to identify a nonlinear system.Recursive least-sqursive least-squares with exponential forgetting, stochastic approximation,and projection algorithm are also given for comparison. Hybrid parameter estimation combined with evolutionary computation is then proposed . Simulation results show that the proposed schemes have better performance on system modeling then the conventional least-squares estimation and the recurrent neural network. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/4994 | ISSN: | 1343-4500 | DOI: |
顯示於: | 通訊與導航工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。