Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Novel Predictive Current Control for Four-Switch Three-Phase Inverter-Fed Synchronous Reluctance Motors

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Novel Predictive Current Control for Four-Switch Three-Phase Inverter-Fed Synchronous Reluctance Motors
Code/計畫編號
MOST103-2221-E019-026
Translated Name/計畫中文名
三相四開關變頻供電型同步磁阻電動機之新型預測電流控制
 
Project Coordinator/計畫主持人
Cheng-Kai Lin
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Electrical Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=8357655
Year
2014
 
Start date/計畫起
01-08-2014
Expected Completion/計畫迄
31-07-2015
 
Bugetid/研究經費
722千元
 
ResearchField/研究領域
電子電機工程
 

Description

Abstract
由於同步磁阻電動機的結構簡單、堅固和低成本的特性,故它已被廣泛地應用 於各種工業應用中。目前,三相六開關變頻供電型同步磁阻電動機驅動系統中所使 用的開關切換方法已接近成熟。然而,在三相四開關驅動系統中,仍然有很多改善 和發展的空間。因此,新的開關切換方法是值得發展以提供三相四開關驅動系統其 他可行的選擇。上述情況激發我們提出這個計畫。 在所提的計畫中,我們將在兩年內開發兩種適用於三相四開關變頻供電型同步 磁阻電動機驅動系統的開關切換方法。其中一種是模型式預測電流控制,它是以同 步磁阻電動機的延伸型反電動勢估計方法為基礎。而另一種是無模型式預測電流控 制,它是基於量測定子電流。 在第一年期間(2014年8月1日至2015年7月31日),我們計劃開發一種基於模 型的預測電流控制方法,這方法將使用到同步磁阻電動機的等效離散模型。使用這 個模型時,定子電阻、q 軸電感和同步磁阻電動機的延伸型反電動勢會被使用以預 測未來的電流。從概念上講,我們將設計一個成本函數,它可以量化電流命令和三 相四開關變頻器在不同開關切換模式下所對應的電流預測值之間的電流誤差。在目 前的取樣間隔中找出具有最小成本函數的開關切換模式,該切換模式將在下一次取 樣間隔內被選擇和採用。與現有的方法相比,我們的方法是有效且易於實現,而表 現將令人滿意。 在第二年期間(2015年8月1日至2016年7月31日),一種無模型式的預測電流 控制方法將被開發,以實現在三相四開關同步磁阻電動機驅動系統。這種電流控制 方法,不需要任何電動機參數亦不需要使用電動機的數學模型。只需測量定子電流 和記錄三相四開關變頻器在四種不同開關切換模式下所對應的電流差,便可預測未 來的電流。此種電流控制方法的主要優點是對電動機的參數變化不敏感。類似於模 型式預測電流控制,在目前取樣間隔內選擇出具有最小成本函數的開關切換模式, 該切換模式將在下一次取樣間隔內所採用。最後,我們將針對上述兩種預測電流控 制方法進行實驗以驗證所提方法的正確性和可行性。"Synchronous reluctance motor (SynRM) has been widely used in various industrial applications due to its simple, rugged structure, and low cost. Currently, the switching methods used in the six-switch three-phase inverter-fed SynRM drive system are nearly mature. However, in the four-switch three-phase (FSTP) drive system, there is still a lot of room to improve and advance. Therefore, it is worthy to develop new switching methods so as to provide other viable choices for the FSTP drive systems. The above circumstances motivate us to propose this project. In this project, we will develop two switching methods for FSTP inverter-fed SynRM drive systems in two years period. One of the methods is called model-based predictive current control, which is based on an estimation method of extended back-EMF of SynRM, and the other one is model-free predictive current control, which is based on measuring stator currents. In the first year period (2014/08/01~2015/07/31), we plan to develop a model-based predictive current control method, in which an equivalent discrete model of SynRM will be employed. With this model, the stator resistance, the q-axis inductance, and the extended back-EMF of the SynRM are used to predict the future current. Conceptually, we will design a cost function, which can quantify the current errors between the current commands and the predicted currents under different switching states of the FSTP inverter. A switching mode that minimizes the value of the cost function in the present sampling interval will be selected and applied in the next sampling interval. Compared to the existing methods, the proposed method is more effective and simpler for the implementation with satisfactory performance. In the second year period (2015/08/01~2016/07/31), a model-free predictive current control method will be developed and realized for the FSTP SynRM drive system. This current control method will not require any knowledge of the motor parameters nor its mathematical model. Only measuring the stator currents and recording the current differences under four different switching modes of the FSTP inverter are required so as to predict the future current. The main advantage of this current control method is that it is insensitive to motor’s parameter variations. Following the same rule in the model-based predictive current control, the switching mode, which minimizes the cost function, will be selected in the present sampling interval and be applied in the next sampling interval. We will conduct experiments to validate the two predictive current control methods aforementioned, verifying the correctness and feasibility of the proposed methods. "
 
Keyword(s)
同步磁阻電動機
電流預測控制
延伸型反電動勢
電流變化量
三相四開關變頻器
synchronous reluctance motor
predictive current control
extended back-EMF
current variation
four-switch three-phase inverter
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback