Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Development of Model-Free Predictive Current Control Technology for Advanced Slim Sensorless BLDC Permanent Magnet Electric Motors with Low Rare Earth Elements

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Development of Model-Free Predictive Current Control Technology for Advanced Slim Sensorless BLDC Permanent Magnet Electric Motors with Low Rare Earth Elements
Code/計畫編號
MOST103-2221-E019-045-MY2
Translated Name/計畫中文名
先進薄型低稀土無感測器直流無刷永磁電動機之無模組電流預測控制技術開發
 
Project Coordinator/計畫主持人
Hsing-Cheng Yu
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Systems Engineering and Naval Architecture
Website
https://www.grb.gov.tw/search/planDetail?id=8361418
Year
2014
 
Start date/計畫起
01-08-2014
Expected Completion/計畫迄
01-07-2015
 
Bugetid/研究經費
666千元
 
ResearchField/研究領域
電子電機工程
 

Description

Abstract
"永磁直流無刷電動機具有結構簡單、高功率密度/效率、高轉動慣量比、高強健性 等優點,但由於目前稀土元素來源受限,在有限的資源情況下,設計低徑長比與低稀土 使用量的電動機,或在相同的稀土使用量提高功率密度與輸出功率,已是目前永磁電動 機的研究方向與目標。本計畫除了開發先進薄型低稀土直流無刷電動機之外,亦同時開 發匹配之驅動器。第一年度結合改良式 C 型雙氣隙與永磁表面微結構設計概念來完成薄 型低稀土無感測器三相 24 槽 20 極軸向磁通直流無刷電動機之雛型機,其規格為 400W 額定功率,4,000 rpm 額定轉速,徑長比小於 0.15,稀土元素重量佔電動機總重之比率 小於 0.1,扭力密度可達 3.5 Nm/kg以上,電動機效率可達 90%以上。並以模組化預測 電流控制為基礎,開發無模組預測電流控制器,其目的是以改善模組預測電流控制需精 準的電動機特性參數的缺點,達成三相直流無刷電動機更好的電流追蹤效果,並可節省 驅動器的硬體電路,達成減少成本的目標。第二年度預計搭配預測電流控制、預測轉矩 控制及速度閉迴路控制,應用至新開發的六相直流無刷電動機,利用轉矩誤差和磁通誤 差來製作成本函數,並優化成本函數達到最佳化之目的,亦透過權重因子的設定來調整 電動機之運轉性能,以提高電動機之輸出轉矩、減少頓轉轉矩、優化頓轉漣波、縮小電 動機之啟動電流使啟動更為容易,且具有低噪音與低振動之特性。" "There are several advantages in permanent magnet (PM) brushless DC machines (BLDCMs), such as simple structure, high power density, high efficiency, high moment of inertia ratio, high robustness, and so on. Due to limited development of rare earth resource in PMs, PM-BLDCM design with low diameter/length ratio and low rare earth usage or increase power density and output power at the same usage quantity of rare earth element under restricted resources become more important. Not only advanced slim axial-flux sensorless BLDCMs with low rare earth elements are developed in this project, but also a suitable driver and controller are matched with the machines. In the first year period, a slim 24-slot and 20-pole prototype of three-phase axial-flux sensorless BLDCMs with low rare earth material that follow the concepts of the modified c-shape double air-gap and microstructure presented on PM surface is implemented. The specification of the designed prototype: the rated speed is 4,000 rpm, diameter/length ratio is smaller than 0.15, weight of low rare earth PM/weight of the machine ratio is smaller than 0.1, torque density is 3.5 Nm/kg at least, and overall efficiency of the machine is above 90%. Based on model-based predictive current control, the development of a model-free predictive current control can be adopted to improve disadvantages of machine control needs accurate parameters and back-EMF, and to achieve better current track. In addition, it can get rid of hardware of the driver and cost-effective target to apply in the PM-BLDCMs. In the second year period, the applications will be applied in new six-phase BLDCMs whose cost function are obtained by torque error and magnetic flux error with algorithm combination of predictive current control, predictive torque control, and closed-loop speed control. The proposed strategy replaces the single cost function with a multi-objective optimization based on a ranking approach. This method makes the tuning of weighting factors unnecessary for a correct operation. The characteristics of the proposed PM-BLDCMs can be adjusted by weighting factor setup, and can improve the output torque, cogging torque, cogging ripple, inrush current, noise and vibration via optimize cost function."
 
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback