Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

General Formula and Using Algebra Computer-Based System Constructs Inverse Solution of the Meridian Arc Length

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
General Formula and Using Algebra Computer-Based System Constructs Inverse Solution of the Meridian Arc Length
Code/計畫編號
MOST105-2410-H019-016
Translated Name/計畫中文名
子午線弧長的一般通解及利用計算機代數系統建立其反解
 
Project Coordinator/計畫主持人
Wei-Kuo Tseng
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Merchant Marine
Website
https://www.grb.gov.tw/search/planDetail?id=11888324
Year
2016
 
Start date/計畫起
01-08-2016
Expected Completion/計畫迄
31-07-2017
 
Bugetid/研究經費
719千元
 
ResearchField/研究領域
經濟學
 

Description

Abstract
現代產業界使用地球的標準參考座標為世界地理系統(World Geodetic System,WGS 84),地理資訊系統、測地學及導航等相關領域使用這個系統的參數進行相關地理物件運算,國際上主要幾個關於地理物件資料庫也是利用相同標準參考座標,諸如微軟資料庫地理類別(Microsoft SQL Server’s Geography Type)、著名地理空間資訊函數庫(Geodyssey’s Hipparchus library)、國際事務機器的地理資料庫(IBM’s DB2 Geodetic Extender and Informix Geodetic Datablade)及甲骨文(Oracle)等等。子午線弧長是地圖投影和距離計算(如墨卡托海圖、通用橫軸墨卡托投影地圖、大橢圓、恆向線和測地線)演算法中一個非常重要的元素。由於地理資訊系統及導航軟體缺乏官方標準化計算方法,在系統中使用的這些“黑匣子計算方法”是未知的,從而導致需要提供富有邏輯、精確及更簡單的演算法給業界及相關人員使用,因為前人推導子午線弧長通式非常複雜及難理解,基於利用歐拉公式、二項式定理和正弦偶次方的一般展開式,本計畫提出簡單及易於理解的方法來獲得新的子午線弧長一般通式,再利用反演定理處理子午線弧長反解問題數位電腦已經是現代的地理資訊及導航人員最主要的輔助工具,因此當代的業界可以考慮全面使用橢球模型解決相關的計算問題,在發展建立導航及測地學的數值演算法及軟體前,必須先有涵蓋所有可能情況的簡潔理論的概念,才能進一步利用這些理論發展相關的演算法及編撰電腦程式碼,本計畫提出的通用公式適用於計算機的演算法程序、地理資訊系統及其他導航常見的一般用途。With the WGS 84 ellipsoid datum used in geographic information system and modern navigation, the meridian arc length is a very important factor for map projections and distance calculations such as Mercator charts , Universal Transverse Mercator (UTM), great ellipses, rhumb lines, and geodesics. As navigational softwares lack official standardization calculation methods, these “black box solutions” used in navigational systems are unknown, causing a need to provide logical and simpler formulas for public use. With previous derivations of the meridian arc length general formula being unnecessary complicated and hard to understand, this paper uses simple and easy understanding methods involving Euler's formula, binominal theorem, and general terms of even powers of sine to derive the new meridian arc length general formula. The general formula presented in this paper is suitable for computer algorithm programming, and other GIS and navigational common uses.
 
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback