Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Developments of a Novel and Parallel Numerical Model for Shallow Water Equations

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Developments of a Novel and Parallel Numerical Model for Shallow Water Equations
Code/計畫編號
MOST103-2221-E019-055
Translated Name/計畫中文名
淺水波方程式之創新與平行化模擬模式研發
 
Project Coordinator/計畫主持人
Chia-Ming Fan
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Harbor and River Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=8362481
Year
2014
 
Start date/計畫起
01-08-2014
Expected Completion/計畫迄
31-07-2015
 
Bugetid/研究經費
511千元
 
ResearchField/研究領域
海洋科學
土木水利工程
 

Description

Abstract
近年來由於氣候變遷等因素影響,使得自然災害頻傳,嚴重威脅各國人民與政府的安全與經濟財產,其中尤以淹水、土石流與海嘯等問題最為嚴重。為了避免這些可能發生的天然災害,徹底了解淹水、土石流與海嘯等問題發生時的物理動態變化,以及其可能造成的災害程度是非常重要的。這些物理問題的數學描述方程式即為淺水波方程式,因此快速且準確的求解淺水波方程式將可以幫助我們了解這些天然災害問題的物理機制與成因。本計畫預計以二年的時間開發一套平行化的創新電腦模擬模式,能快速且準確的模擬淺水波方程式,進而瞭解這些天然災害的動態變化,以達到防災與減災的功能。本研究將採用一種新的數值分析方法(廣義有限差分法)來求解二維淺水波方程式,廣義有限差分法不需要數值積分,不需要建立網格,也不需要記錄點與點之間的關聯性,因此在計算上非常的有效率;而時間離散方面將採用顯式法積分,可以避免求解大型矩陣與非線性代數方程式的困擾;除此之外,也將採用OpenMP的多核心共享記憶體的平行程式撰寫方法,將程式在二到八個處理器的電腦上進行平行計算。因此本計畫預期可以完成一套平行化的創新數值分析模式,用以求解淺水波方程式,並在河道洪水、都市淹水與海嘯等問題上驗證模式的可行性與平行效率。Due to the recent climate change and rapid globalization, there are many natural disasters happened all over the world in the recent years. Among them, the inundation, the debris flow and the tsunami are the most dangerous to human livings. So, it is very important and necessary to understand the dynamics of these events in order to prevent the damages from these natural disasters. The mathematical descriptions for the above-described events are the shallow water equations. Once it can be efficiently and accurately analyzed, the results will help us to understand the physics of these problems and prevent possible damages. In the two-years project, a novel and parallel numerical model will be developed to efficiently and accurately resolve these equations. From the numerical solutions of this model, we can understand the physics and dynamics of these natural disasters. We would use a novel numerical method, which is called the generalized finite difference method (GFDM), to analyze the two-dimensional shallow water equations. To adopt the GFDM for spatial discretization can avoid time-consuming mesh generation, numerical quadrature and bookkeeping the nodal connectivity. Hence, it is very efficient for numerical simulation. On the other hand, the explicit time integration method will be adopted to avoid large-scale matrix and system of nonlinear algebraic equations. In addition, the OpenMP application program interface will be used to parallelize the computer code for shallow water equations. The shared-memory multi-threads parallel-computing code will be implemented in an eight-cores computer. Therefore, in this project we will develop a novel numerical model by using parallel computation to analyze the shallow water equations. This model will be tested for practical problems of river flow and urban inundation as well as tsunami to verify the efficiency, the stability and the accuracy of the proposed model.
 
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋