Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Generalized Finite Difference Method for Propagation of Nonlinear Water Waves in Numerical Wave Flume

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Generalized Finite Difference Method for Propagation of Nonlinear Water Waves in Numerical Wave Flume
Code/計畫編號
MOST105-2221-E019-047
Translated Name/計畫中文名
以廣義有限差分法建立數值波浪水槽並研究非線性波浪傳遞現象
 
Project Coordinator/計畫主持人
Chia-Ming Fan
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Harbor and River Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=11878474
Year
2016
 
Start date/計畫起
01-08-2016
Expected Completion/計畫迄
31-07-2017
 
Bugetid/研究經費
481千元
 
ResearchField/研究領域
土木水利工程
 

Description

Abstract
"以廣義有限差分法建立數值波浪水槽並研究非線性波浪傳遞現象 本計畫將研發一套以廣義有限差分法為基礎的數值波浪水槽,進而研究非線性波浪運動 之動態變化與物理特性。不論是為了增進海洋工程的規劃設計,或是有關海洋能源之研究需 要,清楚了解非線性波浪之傳播變化以及與不規則底床之交互作用都是非常重要的,因此研 發一套有效率且準確的非線性波浪電腦模擬模式是本計畫的主要目標。廣義有限差分法是近 年來發展之無網格法之一,在模擬的過程中可以避免網格生成與數值積分等工作,對於波浪 模擬等移動邊界的問題特別有效率,因此本計畫採用廣義有限差分法進行問題之空間離散, 並以Runge-Kutta 法進行時間的離散。而為了增進電腦模式的穩定性與準確性,在本計畫所開 發的數值模式中,我們將在數值水槽的入口處與出口段分別加入斜坡函數與海綿層的新興數 值技術。本計畫將以數個案例驗證所開發之數值水槽的準確性與穩定性,包含兩種不同形式 之造波條件,進而了解強非線性與弱非線性波浪傳遞時之動態變形等問題,並將模擬波浪經 過水下不規則結構物時之流場變化。除此之外,我們也將測試不同模擬參數對於結果穩定性 與準確性之影響,並討論本模式未來在海洋工程與海洋能源領域之潛在應用性。""Generalized finite difference method for propagation of nonlinear water waves in numerical wave flume In this project, a numerical wave flume, based on the generalized finite difference method, is proposed to analyze the propagation of nonlinear water waves. To clearly comprehend the propagation of nonlinear waves and the interactions between waves and irregular seabed is essential and urgent to academic and industrial communities of ocean engineering and ocean energy. Thus, the primary objective of this project is to develop an efficient, accurate and stable numerical wave flume for water-waves propagation. The generalized finite difference method, which is truly free 表CM02 共 2 頁 第 2 頁 from mesh generation and numerical quadrature, is one kind of newly-developed meshless methods, so the generalized finite difference method is very efficient for engineering problems, especially for moving-boundary problems. The generalized finite difference method is adopted for spatial discretization, while the Runge-Kutta method is used for temporal discretization of the propagation problem of nonlinear water-waves. Besides, a ramping function and a sponge layer are, respectively, introduced in the inlet and outlet boundary segments in order to stabilize the numerical scheme. Several examples will be adopted to verify the merits of the proposed numerical wave flume. Two different wave-making conditions will be examined and the differences between the propagations of highly-nonlinear and slightly-nonlinear waves will be found. In addition, the numerical wave flume will be used to simulate the interactions between nonlinear waves and submerged obstacles. Different parameters, such as total nodes, time increment, etc., will be examined to validate the accuracy, stability and efficiency of the proposed numerical wave flume. Finally, some potential engineering applications of the proposed numerical wave flume in ocean engineering and ocean energy will be discussed in this project."
 
Keyword(s)
廣義有限差分法
數值波浪水槽
非線性波浪
無網格法
generalized finite difference method
numerical wave flume
nonlinear water waves
meshless method
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋