Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Delay-Dependent H∞ Control of Linear Parameter Varying Stochastic Systems with Interval Time-Varying Delays

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Delay-Dependent H∞ Control of Linear Parameter Varying Stochastic Systems with Interval Time-Varying Delays
Code/計畫編號
MOST105-2221-E019-055
Translated Name/計畫中文名
針對具區間時變延遲之線性參數時變隨機系統之延遲相依H∞控制
 
Project Coordinator/計畫主持人
Cheung-Chieh Ku
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Marine Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=11891647
Year
2016
 
Start date/計畫起
01-08-2016
Expected Completion/計畫迄
31-07-2017
 
Bugetid/研究經費
645千元
 
ResearchField/研究領域
電子電機工程
 

Description

Abstract
"一般而言,系統參數變化特性導致控制問題趨向複雜且困難;傳統之內部擾動描述系 統中參數變化之架構造成了某些限制,為減少相關限制,本計畫將以時變矩陣描述系統參 數隨時間變化之特性;另外,隨機行為與時間延遲常存在系統動態中,因此吾人將以具時 間延遲之線性參數時變隨機系統為架構探討穩定性分析與控制器設計問題,並針對相關問 題提出兩年計畫。 第一年計畫中,吾人擬將系統之時間遲延效應考慮為區間時變延遲效應,且該延遲效 應將同時考慮系統之狀態與輸入中,對此,吾人將提出新穎的里阿伯諾-克拉索夫斯基 (Lyapunov-Kravoskii) 方程式以及轉換技術以減少穩定條件的保守性,故而在第一年計畫中 擬對具區間時變延遲效應之線性參數時變隨機系統發展出較寬鬆之穩定法則與控制器設計 方法。 第二年計畫中,吾人擬將外部雜訊加入第一年計畫中考慮之系統;本年度計畫中,狀 態與輸入之時間延遲效應將考慮為不同延遲訊號,藉此提高計畫中所發展出穩定條件的廣 泛性;此外, H 控制方法用於消除外部雜訊對系統之干擾;對此,吾人將提出不同於第 一年計畫中之里阿伯諾-克拉索夫斯基 (Lyapunov-Kravoskii) 方程式推導充分條件以探討 連續與離散型具區間時變延遲及外部雜訊之線性參數時變隨機系統的穩定性分析與控制器 設計之相關議題。""In practical application, complexity and difficulty of control problems are increased because parameters in system depend on time. Generally, perturbations are described by the terms as norm bound that leads limit on describing uncertain systems. For the reason, state matrices depending on time are applied to characterize time-varying parameters in system. In addition, stochastic behaviors and time delay effects are also considered. Thus, stability analysis and controller synthesis of Linear Parameter Varying (LPV) stochastic systems with time delay are discussed and investigated in this project. In this project, the purposes will be carried out in two years. In the first year, an interval time-varying delayed effect will be considered in both state and input. In order to decrease conservatism of the derived sufficient conditions, novel Lyapunov-Kravoskii functions and relaxed transfer technologies are proposed. Therefore, a relaxed stability criterion LPV stochastic system with interval time-varying delay will be respectively proposed for continuous case and discrete case. In the second year, effects of time delay and external disturbance on LPV stochastic systems will be considered. In this year, the effect of time delay on state and input will be concerned by different interval time-varying delay case. Through this consideration, effectiveness and usefulness of the proposed design methods are increased to practical application. Moreover, H control scheme is applied in this project to constrain effect of external disturbance on system. According to different delay effect in state and input, new Lyapunov-Krasvoskii function will be respectively proposed to derive some sufficient conditions. Through the derived sufficient conditions, the delay-dependent H stability criterion of LPV stochastic systems with interval time-varying delay and external disturbance will be respectively proposed for continuous case and discrete case."
 
Keyword(s)
線性參數時變系統
隨機系統
區間時變延遲
里阿伯諾-克拉索夫斯基方程式
H 理論
線性矩陣不等式
LPV System
Stochastic System
Interval Time-Varying Delay
Lyapunov-Krasovskii Function
H Theory
LMI
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋