Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Thermoelectric Properties of Ti50Cu28Ni15Sn7/Zn4Sb3 Nanocomposite Fabricated by Mechnaical Alloying and Vacuum Hot Pressing Techniques

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Thermoelectric Properties of Ti50Cu28Ni15Sn7/Zn4Sb3 Nanocomposite Fabricated by Mechnaical Alloying and Vacuum Hot Pressing Techniques
Code/計畫編號
MOST104-2221-E019-004
Translated Name/計畫中文名
結合機械合金與真空熱壓方式製備之Ti50Cu28Ni15Sn7/Zn4Sb3奈米複合材料熱電特性研究
 
Project Coordinator/計畫主持人
Pee-Yew Lee
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Optoelectronics and Materials Technology
Website
https://www.grb.gov.tw/search/planDetail?id=11579025
Year
2015
 
Start date/計畫起
01-08-2015
Expected Completion/計畫迄
31-07-2016
 
Bugetid/研究經費
1101千元
 
ResearchField/研究領域
材料科技
 

Description

Abstract
"中溫熱電材料包含Tellurides (PbTe/GeTe/AgSbTe2)、Half-Heusler(MNiSn, M=Zr, H, Ti)、Filled Skutteruide(CoSb3, CeFe3.5Co0.5Sb12) 、Antimonides(Zn-Sb) 、Silicides(MgSi2, Fe2Si,Mn2Si, Sr2Si) 、 Oxides(NaxCoO2、Ca3Co4O9)等多種材料系統,如考慮材料可考度、高ZT特性、P/N電性匹配等因素, 則以碲化鉛(PbTe)系列熱電材料為最佳選擇,但此材料之組成為鉛碲,鉛為嚴重環境污染物,對地球環 境與人類健康有潛在的威脅,而碲元素的價格在2011年開始飆漲,價格較往年平均值成長3~5倍,雖然 今年起價格已回跌40%,但仍高達每磅100美元,除此外碲在地表的蘊藏量甚至比鉑(Pt)少,故其在未 來的價格波動幅度預期是漲多跌少之趨勢,因此碲化鉛(PbTe)熱電材料在未來之使用勢必因價格/蘊藏 量/環保等因素考量而受到嚴格的檢驗,相對於此,β-Zn4Sb3因為原料價格便宜、地表蘊藏量豐富與無 毒的特性,並具備低熱傳導係數及在670K時擁有高達1.3的熱電優值,故考量對環境友善與原料成本之 因素,β-Zn4Sb3在未來將會是比PbTe更具應用潛力的中溫熱電材料,但由於Zn4Sb3體系本身的材料脆性 和在相轉變過程中由於熱膨脹係數變化而產生的微裂紋,導致材料具有較差的力學性能和可加工性, 大大限制了β-Zn4Sb3材料的商業化應用。因此開發出可製造具有優良熱電性能與高機械強度之Zn4Sb3 材料的嶄新製程,最近已成為熱電相關研究學者的努力目標。 近年來應用奈米複合材料(Nanocomposite)結構來提升材料性能的概念,已被廣泛應用於很多新穎 材料的開發,奈米熱電複合材料塊材的研發當然亦不自外於此,應用此設計概念,申請人於甫結案之 「含非晶質合金相之碲化鉍基奈米複合材料塊材之製備及其熱電特性研究」研究計畫 (101/08/01~103/07/31,計劃編號: 101-2221-E-019-030-MY2)中,發現結合機械合金與真空熱壓製程製備 之具非晶/奈米結構的Ti50Cu28Ni15Sn7 /Bi0.4Sb1.6Te3熱電複合材料塊材,藉由Ti50Cu28Ni15Sn7非晶質合金之 添加,塊材的熱電優值(ZT)均隨溫度增加而升高,並於最高之量測溫度達最大值,相對於此,至目前 為止所有碲化鉍基熱電材料之ZT值均隨溫度增加而呈先升後減的趨勢,由TEM明視野影像可看出,此 特殊行為是多數的Ti50Cu28Ni15Sn7非晶質合金粉末均勻散佈於Bi0.4Sb1.6Te3基材晶界上所致,故據上述結 果可知在Zn4Sb3合金中,若添加之Ti50Cu28Ni15Sn7非晶質合金粉末亦可均勻散佈於Zn4Sb3基材晶界上, 則此種具非晶/奈米結構之Zn4Sb3熱電複合材料塊材的熱電優值(ZT)應可隨溫度增加而升高,而ZT值也 可望因此獲得大幅提升。 綜上所述,將Ti50Cu28Ni15Sn7非晶質合金引入具納米結構之β-Zn4Sb3合金中,預期可提升β-Zn4Sb3 合金的熱電與機械性能。故本研究之目的在探討結合機械合金與真空熱壓製程之粉末冶金技藝來製備 具非晶/奈米結構之Ti50Cu28Ni15Sn7/Zn4Sb3熱電複合材料塊材的可行性,並進一步瞭解塊材的材料特性與 熱電性質的關聯性。研究工作之進行先利用高能量球磨處理方法,分別製備出非晶Ti50Cu28Ni15Sn7與奈 米β-Zn4Sb3粉末,接著將此二種粉末依設定比例混合後,再以高能量球磨機合成具非晶/奈米結構之 Ti50Cu28Ni15Sn7/Zn4Sb3熱電複合材料粉末,最後利用真空熱壓成型技術將此熱電複合材料粉末製備成塊 材,所製備之熱電複合材料粉末與塊材,除將依序以X光繞射儀、SEM 掃瞄式電子顯微鏡、TEM 穿 透式電子顯微鏡及HRTEM 高分辨穿透式電子顯微鏡進行分析及研究其微觀組織結構外,另亦針對熱 電複合材料塊材進行席貝克係數、電傳導率、熱傳導率、ZT 值的檢測,藉此瞭解具非晶/奈米結構之 Ti50Cu28Ni15Sn7/Zn4Sb3熱電複合材料塊材的熱電性質;詳細評估所得之數據資料後,除可獲知具非晶/ 奈米結構之Ti50Cu28Ni15Sn7/Zn4Sb3塊材的材料特性與熱電性能的關聯性外,同時也可開發出應用高能量 球磨及真空熱壓製程製備具高熱電性能之具非晶/奈米結構之Ti50Cu28Ni15Sn7/Zn4Sb3奈米熱電複合材料 塊材的最佳化條件。" "PbTe-based thermoelectric materials with high ZT (>1), including AgPbmSbTem+2, PbTe, and PbxSb1-xTe3 have become the most promising thermoelectric (TE) materials in the intermediate temperature range. Nevertheless, they always face similar challenges in terms of containing high-cost or toxic elements, especially lead (Pb) or tellurium (Te). As is well known, Pb is harmful to human health, and the European Union has regulated its usage in electronic devices. On the other hand, the price of Te is over US $100 per pound and its atomic abundance is even lower than that of platinum (Pt). Therefore, commonly available and inexpensive thermoelectric materials have received increasing attention and it is necessary to develop high-performance but Pb/Te free materials for industrial applications. Recently, P-type β-Zn4Sb3 compound has re-attracted increasing interest because it has exceptional thermoelectric properties in the intermediate temperature range. The maximum ZT value reaches 1.3 at 670K because of its extremely low thermal conductivity originated from its complex crystal structure. Moreover, its constituent elements, zinc (Zn) and antimony (Sb), are earth abundant, environmentally friendly, and nontoxic. However, the fragility and the microcracks result from the phase transition greatly decrease the mechanical property and process ability, which limits its commercial application. Therefore, to fabricate β-Zn4Sb3 bulk material with not only high thermoelectric performance but also high mechanical durability is of vital significance. Recently, numerous attempts have been made to increase the ZT value of TE materials. One effective method is to reduce the lattice thermal conductivity by refining the grain size based on incorporating additional phonon scattering sites inside the grain boundary regions. In our last NSC-supported project: “Fabrication and thermoelectric properties of Bismuth Telluride based bulk nanocomposite containing amorphous alloy phase” supported by NSC (NSC 101-2221-E-019-030-MY2), the amorphous Ti50Cu28Ni15Sn7/nano-Bi0.4Sb1.6Te3 nanocomposites were prepared by a combination of mechanical alloying (MA) and vacuum hot pressing (VHP) techniques. We found the ZT of these nanocomposites were increases with increasing temperature and reaching a maximum value at the highest temperature measured. Such specific behavior has never been observed in Bi2Te3-based TE materials, where the temperature-dependent ZT is initially increases with temperature and then decreases after reaching the maximum value. The TEM results indicated the introduction of Ti50Cu28Ni15Sn7 amorphous particles into grain boundary of Bi0.4Sb1.6Te3 matrix were responsible for such significant increase of ZT value at high temperature region. Consequently, the thermoelectric properties and mechanical properties of β-Zn4Sb3 materials are expected to be improved by obtaining nanostructure combining doping Ti50Cu28Ni15Sn7 amorphous particles into β-Zn4Sb3 matrix. Therefore, the goal of this proposal is to investigate the feasibility of preparing new amorphous-Ti50Cu28Ni15Sn7/nano-Zn4Sb3 nanocomposites by a combination of mechanical alloying (MA) and vacuum hot pressing (VHP) techniques. The phase transform and the microstructure formation during the MA processes, and the influences of different MA and VHP parameters on TE properties and mechanical properties will be studied. The structure of as-prepared nanocomposite powders and bulk nanocomposites materials will be examined by XRD, SEM, and TEM. In addition, the measurement of thermal conductivity, Seebeck coefficient and electrical conductivity as well as hardness tests on the bulk nanocomposites materials also will be conducted in order to understand the thermoelectric and mechanical property of the resultant amorphous-Ti50Cu28Ni15Sn7/nano-Zn4Sb3 bulk nanocomposite materials. After comprehensive evaluation of all the experimental results obtained in this work, the influence of the microstructure on the thermoelectric property can be elucidated. The optimum conditions for the production of high thermoelectric performance bulk amorphous-Ti50Cu28Ni15Sn7/nano-Zn4Sb3 nanocomposite through ball milling and vacuum hot pressing routes also can be established."
 
Keyword(s)
奈米熱電複合材料塊材
熱電優值
非晶質合金粉末
機械合金
真空熱壓
Bulk nanocomposite thermoelectric materials
Figure of merit
Amorphous alloy powder
Mechanical alloying
Vacuum hot pressing
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback