Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Investigation of Tunable Graphene-Based Plasmonic-Photonic Crystal Nanobiosensors

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Investigation of Tunable Graphene-Based Plasmonic-Photonic Crystal Nanobiosensors
Code/計畫編號
MOST105-2221-E019-049-MY3
Translated Name/計畫中文名
可調式石墨烯電漿光子晶體奈米生物感測器之研究
 
Project Coordinator/計畫主持人
Tzy-Rong Lin
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
郭茂坤
 
Department/Unit
Department of Mechanical and Mechatronic Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=11880871
Year
2016
 
Start date/計畫起
01-08-2016
Expected Completion/計畫迄
01-07-2017
 
Bugetid/研究經費
1070千元
 
ResearchField/研究領域
光電工程
 

Description

Abstract
"近年來,研究發現石墨烯材料具有強侷限光場與可調控其材料性質等特性,引起廣泛的研究關注。 若能將石墨烯與光學生物感測結合,並透過理論模擬與設計,預期將能大幅地提升生物感測器的偵 測與調控能力。本計畫將設計電漿光子晶體奈米生物感測器,並探討其特性;接著,融入聲波擾動 感測器結構,達到調控光學感測的效果;最後,分析石墨烯的表面電漿波效應,探討石墨烯對光學 生物感測器的的影響,增進生物感測器的偵測與調控之能力;設計高靈敏度與高辨識率之可調式石 墨烯電漿光子晶體奈米生物感測器。 本計畫擬以三年時間,進行可調式石墨烯電漿光子晶體奈米生物感測器之研究,預期的計畫內容如 下: 第一年:設計金屬基板上方懸置光子晶體雙奈米樑之結構,使待測物填充於兩奈米樑間之狹縫中。 透過光子晶體的頻隙效應,使光場能量有效侷限於缺陷狹縫而引發共振模態,使光與待測 物之交互作用增強,藉以探討表面電漿波與光子晶體之耦合模態對待測物偵測的能力。 第二年:分別設計光子晶體與聲子晶體,以達到強光聲效應之電漿光聲子晶體生物感測器。光子晶 體與聲子晶體分別具有光子頻隙與聲子頻隙,使光波與聲波模態侷限於缺陷中,分別對待 測物進行偵測,增加感測器對待測物的辨識能力,並將研究聲波調控光學感測器的能力。 第三年:分析石墨烯受到電壓調變後導電率的變化,並將金屬基板材料替換為石墨烯,利用石墨烯 強侷限光場的能力與其可調變的特性,結合聲光效應達到調控感測器元件的效果;同時, 分析石墨烯電漿光聲子晶體結構之光學捕捉力,探討光學模態對待測物捕捉的能力。最終, 設計出高靈敏度與高辨識率及強誘捕力之可調式石墨烯電漿光子晶體生物感測器。" "In recent years, graphene plays substantial roles in optical science and engineering because of its strong optical confinement and tunable conductivity. Also, the active modulation of optical becomes a popular topic in these days. By employing the graphene as a participation of biosensor, an expectation of strong sensitivity enhancement of biosensor can be realized. At the same time, it can achieve the modulation of optic sensing in cooperate with the perturbation of acoustic wave. In order to design a high sensitivity and high sensor merit tunable graphene-based plasmonic-photonic crystal nanobiosensors, this project devote to analysis the plasmonic effect of graphene and investigate the influence of sensing with acousto-optic effect. This project arrange three years to execute the investigation of tunable graphene-based plasmonic-photonic crystal nanobiosensors. And the expected result as follows: First Year: Design a photonic crystal slot nanobeam structure suspended on a metal substrate, and make the analyte filled in the slot. In order to investigate the sensing ability of the plasmonic and photonic crystal hybrid mode, utilize the band gap effect enable the optical energy confine in the defect to trigger the resonance mode, enhance the light-matter interaction between analyte and the resonance mode. Second Year: Design a plasmonic-phoxonic biosensor by separating the phononic and photonic cavity. Because of the crystal structure have dual photonic-phononic bandgap, a cavity mode was confined, which enable tunable bio-detection. Meanwhile, investigate the acousto-optic effect of photon and phonon in terms of the tunability between acoustic wave and optical sensing. Third Year: Analysis the change of graphene’s conductivity after voltage exerted. Replace the substrate into graphene. Utilize the strong confinement of optical mode and the tunable function of graphene, combine the acousto-optic effect to achieve the tunability of the bio-sensor. Meanwhile, analysis the optical trapping force, investigate the effect of trapping analyte in fluids. Eventually, a high sensitivity and high sensor merit tunable graphene-based plasmonic-photonic crystal nanobiosensors equipped with strong trapping force is achi"近年來,研究發現石墨烯材料具有強侷限光場與可調控其材料性質等特性,引起廣泛的研究關注。 若能將石墨烯與光學生物感測結合,並透過理論模擬與設計,預期將能大幅地提升生物感測器的偵 測與調控能力。本計畫將設計電漿光子晶體奈米生物感測器,並探討其特性;接著,融入聲波擾動 感測器結構,達到調控光學感測的效果;最後,分析石墨烯的表面電漿波效應,探討石墨烯對光學 生物感測器的的影響,增進生物感測器的偵測與調控之能力;設計高靈敏度與高辨識率之可調式石 墨烯電漿光子晶體奈米生物感測器。 本計畫擬以三年時間,進行可調式石墨烯電漿光子晶體奈米生物感測器之研究,預期的計畫內容如 下: 第一年:設計金屬基板上方懸置光子晶體雙奈米樑之結構,使待測物填充於兩奈米樑間之狹縫中。 透過光子晶體的頻隙效應,使光場能量有效侷限於缺陷狹縫而引發共振模態,使光與待測 物之交互作用增強,藉以探討表面電漿波與光子晶體之耦合模態對待測物偵測的能力。 第二年:分別設計光子晶體與聲子晶體,以達到強光聲效應之電漿光聲子晶體生物感測器。光子晶 體與聲子晶體分別具有光子頻隙與聲子頻隙,使光波與聲波模態侷限於缺陷中,分別對待 測物進行偵測,增加感測器對待測物的辨識能力,並將研究聲波調控光學感測器的能力。 第三年:分析石墨烯受到電壓調變後導電率的變化,並將金屬基板材料替換為石墨烯,利用石墨烯 強侷限光場的能力與其可調變的特性,結合聲光效應達到調控感測器元件的效果;同時, 分析石墨烯電漿光聲子晶體結構之光學捕捉力,探討光學模態對待測物捕捉的能力。最終, 設計出高靈敏度與高辨識率及強誘捕力之可調式石墨烯電漿光子晶體生物感測器。" "In recent years, graphene plays substantial roles in optical science and engineering because of its strong optical confinement and tunable conductivity. Also, the active modulation of optical becomes a popular topic in these days. By employing the graphene as a participation of biosensor, an expectation of strong sensitivity enhancement of biosensor can be realized. At the same time, it can achieve the modulation of optic sensing in cooperate with the perturbation of acoustic wave. In order to design a high sensitivity and high sensor merit tunable graphene-based plasmonic-photonic crystal nanobiosensors, this project devote to analysis the plasmonic effect of graphene and investigate the influence of sensing with acousto-optic effect. This project arrange three years to execute the investigation of tunable graphene-based plasmonic-photonic crystal nanobiosensors. And the expected result as follows: First Year: Design a photonic crystal slot nanobeam structure suspended on a metal substrate, and make the analyte filled in the slot. In order to investigate the sensing ability of the plasmonic and photonic crystal hybrid mode, utilize the band gap effect enable the optical energy confine in the defect to trigger the resonance mode, enhance the light-matter interaction between analyte and the resonance mode. Second Year: Design a plasmonic-phoxonic biosensor by separating the phononic and photonic cavity. Because of the crystal structure have dual photonic-phononic bandgap, a cavity mode was confined, which enable tunable bio-detection. Meanwhile, investigate the acousto-optic effect of photon and phonon in terms of the tunability between acoustic wave and optical sensing. Third Year: Analysis the change of graphene’s conductivity after voltage exerted. Replace the substrate into graphene. Utilize the strong confinement of optical mode and the tunable function of graphene, combine the acousto-optic effect to achieve the tunability of the bio-sensor. Meanwhile, analysis the optical trapping force, investigate the effect of trapping analyte in fluids. Eventually, a high sensitivity and high sensor merit tunable graphene-based plasmonic-photonic crystal nanobiosensors equipped with strong trapping force is achieved."eved."
 
Keyword(s)
石墨烯
生物感測器
光子晶體
表面電漿波
聲波
光與物質的交互作用
Graphene
Biosensor
Photonic Crystal
Surface Plasmon
Acoustic Wave
Light-Matter Interaction
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback