Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Design and Application of Modulating Wind-Turbine Blade Using Active/Passive Flow Control (II)

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Design and Application of Modulating Wind-Turbine Blade Using Active/Passive Flow Control (II)
Code/計畫編號
MOST109-2221-E019-039
Translated Name/計畫中文名
以主、被動流控制方式調制風機葉片的設計與應用 (II)
 
Project Coordinator/計畫主持人
Shun-Chang Yen
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Mechanical and Mechatronic Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=13544666
Year
2020
 
Start date/計畫起
01-08-2020
Expected Completion/計畫迄
31-07-2021
 
Bugetid/研究經費
800千元
 
ResearchField/研究領域
機械工程
 

Description

Abstract
本計畫申請人基於目前所執行 ‒以主、被動流控制方式調制風機葉片的設計與應用‒ 被動流場新型葉剖面型設計的108年度計畫的延續;以此葉片剖面為依據,擬議以二年時間,計畫發展主動流動控制調控邊界層分離的設計及結合設計、開模、製造出實體風機。由先前的研究中發現,葉片尤其是吸力面如能以被動流動控制邊界層,則會大大提升風機葉片上壓力面與下吸力面壓差,並可將風向不確定因素變因控制,進而帶動風機葉片轉動。因此本計畫,結合108年度計畫,以新的Blended S809剖面為依據下,於吸力面以噴出(Injection)、及吸入(Suction)流體之主動式流動控制方式,調控吸力面的最大厚度點(Maximum thickness)到葉片後緣之間邊界層的厚度;增進風機效能(Wind-turbine efficiency)之提升設計。有鑑於此,在此專題研究計畫中;第一年中,將新型的風機葉片(Blended S809)之吸力面,以噴出、及吸入之主動式流動控制方式,調控吸力面的邊界層厚度;藉由不同型態的噴出、吸入於葉片表面流體,達到控制分離泡的調控,進而增加壓力差。噴出、吸入流體控制過程中將以函數產生器及功率放大器,所產生的不同波形、頻率及振幅為驅動訊號。驅動訊號的成因可為風速大小、方向藉以產生不同的參數,改變噴出、吸入流體強度與頻率等特性。實驗以壓力掃描器擷取鈍體的表面壓力,並輔以表面油膜流的流場可視化法,界定受激擾時表面的分離、再接觸、及分離泡等物理特性與氣動力的關係;以熱線風速儀偵測尾流區非穩態結構的物理現象,藉以釐清葉片受噴出、吸入流動下尾流的性質;並利用六力平衡儀量測氣動力性能。第二年中,回饋前一年所得到的新型風機葉片,及噴、吸流主動流控的結果,搭配葉片攻角、葉片根掠角、葉片尖端上反角(Dihedral angle)、與葉片扭彎(twist angle)條件下;結合設計、開模、製造出實體風機,進行風力發電之測試。過程中,風機構置於風洞測試區,進行風機效能發電研究;以風機葉片驅動步進馬達做為發電機使用,類永磁式發電機原理;並以線圈在固定磁場中轉動產生電流脈波,經倍壓器轉為直流電壓輸出;再將電力輸入至充電電路系統中。實驗過程以轉速、風速、風向條件下擷取風力發電系統產生的電壓與電流,並計算風能產生的功率。並以風機理論分析推算最佳效能之風力發電,研究結果將在風機葉片的實際應用有大的助益。 This project will utilize the results of the previous study ‒ Design and Application of Modulating Wind-Turbine Blade Using Active/Passive Flow Control ‒ to present experiments and analyses on the passive flow control of wind-turbine blade. The purpose of the project is to propose experimental studies to improve the wind-turbine efficiency using the active flow control on the wind-turbine blade. The bluff-body effect of the wind-turbine blade modulates the aerodynamic performance and wake vortex. Basing on the previous results, this project blend the S809 to design a new blade (Blended S809 blade). This new blended blade is utilized to actively control the boundary-layer separation. The previous studies shows that the pressure difference between the upper suction surface and lower pressure surface can be increased significantly when the suction surface boundary layer on the wind blade is passively controlled. Furthermore, the uncertainty of wind direction can be controlled and the wind blade cane be rotated efficiently. This project utilizes the concept of technological development and join the previous results of the applicant’s researches to design a new airfoil. On the suction surface, the injection and suction mechanisms are utilized to actively modulate the boundary-layer thickness between the maximum thickness and trailing edge. Furthermore, the wind-turbine efficiency is improved. In the first-year project, the boundary-layer thickness between maximum thickness and trailing edge on the suction surface will be actively modulated using the injection and suction mechanism. The injection and suction mechanism control the separation-bubble properties and then the pressure difference. In the process of injection and suction, a function generator and power amplifier will be utilized to adjust the waveform, frequency and amplitude. The driving signals consider the wind velocity and wind direction to tune the adjustment parameters. A pressure scanner will be utilized to measure the surface pressure on the blade surface. Furthermore, the surface oil-film flow visualization will be utilized to define the flow separation, reattachment and separation bubble and their relationship with the aerodynamic performance. The hot-wire velocimetry detects the unsteady flow structures and to find the wake properties influenced with the injection and suction process. Additionally, the six-component force balance measures the aerodynamic loadings.In the second-year project, with the results (i.e., new blade design and active flow control mechanisms) of the first two years, the applicant will join the angle of attack, sweep angle, dihedral angle and twist angle of the wind-turbine blade to design, mold and manufacture the entity of wind turbine and then to test the wind-power generation. In the power-generation process, this wind turbine will be set in the test section of wind tunnel to test the wind-power efficiency. The wind blade drives a step motor to generate the electric power. In experimental process, the various rotation speed, wind speed and wind direction will be tested to find their effects on the output voltage and current.
 
Keyword(s)
主動流控制
被動流控制
風機葉片
風機效能
Active control
Passive Control
Wind-turbine Blade
Wind-turbine Efficiency
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋