Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Fabrication of Fiber-Reinfored Collagen-Based Composite, and the Effects of Composition and Topography on the Behaviors of Osteoblasts

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Fabrication of Fiber-Reinfored Collagen-Based Composite, and the Effects of Composition and Topography on the Behaviors of Osteoblasts
Code/計畫編號
NSC99-2320-B019-002-MY3
Translated Name/計畫中文名
纖維強化型膠原蛋白複合基質之製備及其組成與結構對骨細胞的影響
 
Project Coordinator/計畫主持人
Fu-Yin Hsu
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
林翰佳
 
Department/Unit
Department of Bioscience and Biotechnology
Website
https://www.grb.gov.tw/search/planDetail?id=2117765
Year
2010
 
Start date/計畫起
01-08-2010
Expected Completion/計畫迄
01-07-2011
 
Co-Investigator(s)
Han-Jia Lin
Bugetid/研究經費
998千元
 
ResearchField/研究領域
醫學工程
生物技術(醫)
材料科技
 

Description

Abstract
"細胞的增生與分化會與細胞於基質上的貼附行為習習相關。而基材的表面型態、組成及力學特性都會影響到細胞的貼附、細胞的伸展、遷移、增生、基因表現、細胞膜表面之抗原表現及細胞骨架等細胞行為。膠原蛋白為動物體內含量最多的蛋白質且為細胞外間質中主要的成分之一。具有高規則結構之介孔生物活性玻璃(MBG)(孔洞大小在2~50nm),由於其具有高表面積與高孔隙體積,且比傳統之生物活性玻璃的骨生成活性更優異,因此被認為可應用在骨組織工程上。過去我們也曾經製備出含生物分子及生物活性無機質之複合基材,以應用在骨組織再生。在體外實驗發現含生物活性無機質會有較佳的骨生成特性的表現(如osteocalcin 與alkaline phosphatase的表現)。因此,研究計劃的第一年我們將著重於製備介孔生物活性玻璃纖維(MBGNF)及MBGNF-膠原蛋白強化型複合基質,並探討添加MBGNF對支架之力學特性、體外分解特性、體外骨生成活性及對骨母細胞之細胞行為的影響。 細胞外基質為一具多孔性之纖維結構。計畫主持人過去所執行國科會之計畫(NSC 96-2221-E-019-046 ) 已經建立電氣紡織技術製備纖維基材。因此,研究計劃的第二年,我們將利用電氣紡織技術製備MBGNF-collagen奈米複合纖維支架。並探討奈米複合纖維支架對骨母細胞之細胞行為的影響。此外,利用質譜分析建構之蛋白質體學以被認為是可以用來解析complex protein的表現,而可以進一步提供骨母細胞與基材間的相互作用之分子機制。研究計劃第二年的另外一個重要工作是利用質譜分析探討MBGNF對骨母細胞之膜蛋白表現的影響。 本研究計畫之第三年我們將著重在製備順向性纖維微結構之MBGNF-collagen中空圓管複合基質;並探討其力學性質及對骨母細胞的生長與分化的影響。最後以動物實驗驗證此新型骨再生基質對骨癒合之促進能力及可吸收性之評估。" "The proliferation and differentiation of cells are critically dependent on cell-matrix adhesion. It is widely accepted that cell adhesion and most cellular activities, including spreading, migration, proliferation, gene expression, surface antigen display and cytoskeletal function, are sensitive to the topography and molecular composition of the matrix and to the mechanical properties of its substrates. Collagens are the most abundant proteins found in the mammalian. It is the major protein comprising the extracellular matrix. Mesoporous bioactive glass (MBG) with highly ordered structure (pore size 2–50 nm) has been proposed in bone tissue engineering, because their large surface area and pore volume may enhance bone-forming bioactivity as compared with conventional BG (bioactive glass). In the past, we fabricate a composite containing collagen and bioactive inorganic for bone tissue regeneration. When compared to the collagen individual, its composite with bioactive inorganic has shown better in vitro osteogenic properties, such as the expression of alkaline phosphatase and osteocalcin. For this reason, at first year, we will focus on to fabricate a mesoporous bioactive glass nanofiber (MBGNF)-collagen composite matrix, and to investigate the effect of MBGNF on the mechanical strength, in vitro degradation, bioactivity and cellular response of osteoblasts. The native extracellular matrix is a porous, nanofibrous structure. We had successfully set up an electrospinning system to fabricate a nanofiber matrix at the previous NSC project (NSC 96-2221-E-019-046). Therefore, the major works of this project at 2nd year, we will focus on to fabricate a MBGNF-collagen fibrous composite scaffold and to evaluate the effects of this composite on cellular behaviors. Besides, Mass spectrometry–based proteomics has verified greatly helpful for analyzing complex protein expression patterns. Proteomics profiling should provide the underlying molecular mechanisms on regulating interactions between osteoblasts and scaffold. Thus, we will utilize Mass spectrometry to evaluate changes in protein profile induced by MBGNF on osteoblasts. At 3rd year, we will devote to fabricate a hollow cylinder of aligned MBGNF-collagen fibers. Finally, we will evaluate the performance of this novel bone regeneration matrix on bone regeneration."
 
Keyword(s)
電氣紡織
生物活性奈米纖維玻璃
electrospinning
Mesoporous bioactive glass nanofibers
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback