Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Theoretical, model and experimental studies of acoustic transducers for underwater applications, designed on the base of advanced materials-9

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Theoretical, model and experimental studies of acoustic transducers for underwater applications, designed on the base of advanced materials-9
Code/計畫編號
MOST105-2923-E022-001-MY3
Translated Name/計畫中文名
基於先進材料之水中聽音器的理論、模式與實驗分析及應用-9
 
Project Coordinator/計畫主持人
Chin-Feng Lin
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
張順雄
盧晃瑩
王治平
翁健二
吳景凱
楊誌欽
王鴻猷
葉旻彥
楊奇達
 
Department/Unit
National Kaohsiung University of Science and Technology, NKUST
Website
https://www.grb.gov.tw/search/planDetail?id=11714297
Year
2016
 
Start date/計畫起
01-01-2016
Expected Completion/計畫迄
01-12-2016
 
Bugetid/研究經費
796千元
 
ResearchField/研究領域
土木水利工程
 

Description

Abstract
壓電傳感器在水下聲學是很重要的部分,壓電薄膜信號測量方法是對於壓電薄膜輸出的電流與電 壓,以頻譜分析儀及示波器測量。在本計晝中,以下是俄羅斯研究團隊針對問題的解決方案:第一 是以CAD-CAE程序軟件做數學方程式運算,結構和有限元素模型數值實現(FEM)為考慮到極化過程 的高多孔材料,多層結構的實驗設計,通過加工壓電材料建模使用壓電技術的基礎上基礎的壓電技 術,用於微機電系統(MEMS)上。第二是以多準則結構最佳化的數值方法設計多孔壓電梯度和奈米 材料的聲學傳感器(水聽器)的結構。第三是研發水下聲學調制解調器用於水下聲波傳輸的信息, 並將壓電力學和水下聲學的耦合問題,在三維和軸對稱問題的定義下制定,以有限元素法實現多參 數化和多準則最佳化。以3年的時間完成奈米薄膜參數設定、水聽器製作與水下測試。並在本計晝 第一年,發展一種單輸入單輸出多載波調變正交分頻多工水中聲學數據機以及應用實際水下通道多 路徑和都卜勒衰減量測參數的水下通道模擬器。第二年,我們應用德州儀器TMS320C6416 DSP晶片 板實現單輸入單輸出多載波調變正交分頻多工水中聲學數據機以及即時通訊演算法最佳化。第三 年,我們發展多輸入多輸出多載波調變正交分頻多工水中聲學數據機理論模型和方法,應用在高速 資料傳輸或更可靠空間多樣性通訊。 The piezoelectric transducers are important components of Underwater Acoustics, due to they use advantages of piezoelectric materials connected with their higher sensitivity and larger bandwidth. When a signal pressures on the film structure, the piezoelectric film outputs a voltage or current to a spectrum analyzer or an oscilloscope. In the proposal, Russian Research team is directed to the solution of the following basic problems: 1. Mathematical modeling of piezoactive materials by using CAD-CAE program software, construction and numerical realization of finite-element models (FEM) for high-porous materials taking into account the processes of heterogeneous polarization, experimental design of multilayered structures, processed by using piezoelectric technologies based on optimization of properties of the piezoactive materials and used in microelctromechanical systems (MEMS). 2. Development of numerical methods of multi-criteria optimization of constructions of the acoustic transducers (hydrophones) fabricated on the base of porous piezoelectric, gradient and nano-materials. 3. R&D underwater acoustic modem (key element of underwater sensor communication networks), used for acoustic transmission of information through underwater acoustic channels. The coupled problems of piezoelectric mechanics and underwater acoustics will be formulated in three-dimensional and axes-symmetrical problem definitions, performed their finite-element realization (harmonic and non-stationary analysis) in the form of computer program modules operating under control of improved methods of multi-parametrical and multi-criteria optimization.In this 3 year project, the Taiwanese Research Team plans R&D a novel hydrophone technology of a ZnO nanotube thin film based hydrophone and an underwater acoustic modem of the core element in underwater sensor networks. For the ZnO nanotube thin film based hydrophone, we will complete the nano-materials characterization, hydrophone fabrication and testing, and integration with simulation result in 3 years. Underwater acoustic modem is aimed to exchange messages by using acoustic transmissions through an underwater acoustic channel (UAC). In the first year, we will develop an acoustic modem based on the multicarrier modulation of orthogonal frequency division multiplexing (OFDM) under the single-input single-output (SISO) setting. In addition, an UAC simulator will be developed that explores multipath fading and Doppler distortion, inherently existed in a typical underwater acoustic channel. In the second year, we will investigate the implementation of the software SISO-OFDM acoustic modem using Texas Instrument’s TMS320C6416 DSP board for real-time underwater communications. In the third year, we will investigate OFDM acoustic modem under the multiple-input multiple-output (MIMO) setting. MIMO technology can offer spatial multiplexing gain for high data rate transmission or spatial diversity gain for more reliable communication.
 
Keyword(s)
先進材料
壓電材料
奈米薄膜
水聽器
聲學傳感器
水下應用
有限元素法
advanced materials
piezoelectric materials
nanotube thin film
hydrophone
acoustic transducers
underwater applications
finite-element modeling
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋